Quantum Annealing Applied to Optimization Problems in Radiation Medicine

Daryl P. Nazareth, PhD, DABR Medical Physicist, Assistant Professor Department of Radiation Medicine

ROSWELL

Acknowledgments

We would like to thank D-Wave Systems for providing access to their hardware and for computational assistance

In particular, Bill Macready and Mani Ranjbar

- Jason Spaans
- **Tyler Paplham**

Cancer is one of the leading causes of morbidity and mortality worldwide In 2012 there were 14 million new cases of cancer There were 8.2 million cancer-related deaths Number of new cases expected to rise by 70% over next 2 decades (WHO)

Cancer in the US:

In 2016 there will be an estimated 1.69 million new cases of cancer There will be 596,000 cancer deaths 39.6% of people will be diagnosed with cancer in their lifetimes Most common types: breast, lung, prostate, colon, bladder

Cancer is treated using three methods:

Surgery

Cancer is treated using three methods:

Chemotherapy

Cancer is treated using three methods: Radiation Therapy

This is the subject of our work

Dose Calculation

Radiation dose distribution

- Absorbed dose measured in Gy (J/kg)
- Calculated from well-known physics principles
- Clinical calculations use FDA-approved software

CT Simulation

CT scan determines electron density of each voxel of patient anatomy Allows dose calculation and anatomic structure identification (contouring)

Linear Accelerator Part 1

Radiation Production

Linear Accelerator Part 2

Energy ~ 6 MeV

Beam Shaping

Linear Accelerator Part 3

IMRT

IMRT Treatment

The PTV

OARs Slice 1

OARs Slice 2

IMRT

Beamlets

Beams

The DVH

- A Dose-Volume Histogram (DVH) is a graphical representation of the percentage of dose received by a portion of the volume
- For a given treatment plan, the PTV and each organ has an associated DVH
- Is critical to defining the objective function

PTV DVH

Bladder DVH

Ratio of Total Structure Volume [%]

Fem. Heads DVH

Ratio of Total Structure Volume [%]

The Objective Function

$$F(\mathbf{w}) = \alpha \left(P_{v} - D_{v}(\mathbf{w}) \right)^{2} + \sum_{i} \sum_{j} \beta_{i} (\max[0, D_{ij}(\mathbf{w}) - C_{ij}])^{2}$$

w is a vector of beamlet weights or intensities Minimizing $F(\mathbf{w})$ results in optimal IMRT treatment plan

The Target

$$F(\mathbf{w}) = \alpha \left(P_{v} - D_{v}(\mathbf{w}) \right)^{2} + \sum_{i} \sum_{j} \beta_{i} \left(\max[0, D_{ij}(\mathbf{w}) - C_{ij}] \right)^{2}$$

 α =Priority of target dose (How important is it that this dose is fully administered?)

 P_v =Dose prescribed to a given volume, v, of the target

 $D_v(\mathbf{w})$ =Dose actually received by volume v for weight vector \mathbf{w}

The Target

The Target

70 Gy 75 Gy 80 Gy

Penalties

 $\alpha \big(P_{\nu} - D_{\nu}(\mathbf{w}) \big)^2$

 In clinical terms, this ensures that the dose received by the target is as close as possible to the dose prescribed

$$F(\mathbf{w}) = \alpha \left(P_{v} - D_{v}(\mathbf{w}) \right)^{2} + \sum_{i} \sum_{j} \beta_{i} (\max[0, D_{ij}(\mathbf{w}) - C_{ij}])^{2}$$

- \sum_i =Sum over each OAR, eg. bladder = 1
- \sum_{i} =Sum over multiple objectives for a given OAR
- $\beta_i =$ Priority of OAR
- C_{ij} =Objective dose
- D_{ij} =Actual dose received by OAR

DSWELL

Penalties

$$\sum_{i}\sum_{j}\beta_{i}(\max[0,D_{ij}(\mathbf{w})-C_{ij}])^{2}$$

 There is no reward for D_{ij}(w) < C_{ij} because there is negligible clinical benefit to administering less than the objective dose to the OAR

The Process

D-Wave Systems

History of collaboration:

- Contacted D-Wave in 2009, put in touch with Bill
- Initially decided QA could not support IMRT optimization
- Visited lab in Burnaby in 2011 and revisited problem
- Worked remotely using Vesuvius chip and "Black Box" algorithm, 2012-2014

Publication in 2015

IOP Publishing | Institute of Physics and Engineering in Medicine

Physics in Medicine & Biology

Phys. Med. Biol. 60 (2015) 4137-4148

doi:10.1088/0031-9155/60/10/4137

First application of quantum annealing to IMRT beamlet intensity optimization

Daryl P Nazareth and Jason D Spaans

Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo NY 14263, US

E-mail: daryl.nazareth@roswellpark.org

Received 3 November 2014, revised 19 March 2015 Accepted for publication 2 April 2015 Published 1 May 2015

Abstract

Optimization methods are critical to radiation therapy. A new technology, quantum annealing (QA), employs novel hardware and software techniques to address various discrete optimization problems in many fields. We report on the first application of quantum annealing to the process of beamlet intensity optimization for IMRT.

We apply recently-developed hardware which natively exploits quantum mechanical effects for improved optimization. The new algorithm, called

Applying QA

Vesuvius chip supported ~ 512 qubits Weight variables discretized to 7-digit binary variables

Therefore, 70 beamlet weights (nonnegative, continuous) were included Actual clinical case would require 600-1000 beamlet weights

SA Algorithm

Conventional simulated annealing (SA) features:

- Minimize function that is combo of original plus entropy
- Entropy is weighted by temp parameter T
- T is slowly reduced from large values (search space exploration) to 0 (solution)
- Can attain global minimum if cooling slow enough (but exponentially long)

Evaluations

Three methods compared:

- Quantum annealing
- Simulated annealing
- Tabu search: popular heuristic used in combinatorial optimization

Methods were used to determine beamlet weights for two prostate bed cases Each was run for 10⁷ function evaluations and compared for speed and score

Results

Patient	Method	Evals/sec /core	Final Score					
1	QA	9.3	16.9					
1	SA	9.6	6.7					
1	Tabu	4.3	10.0					

2	QA	15.4	70.7
2	SA	17.4	22.9
2	Tabu	6.3	120.0

DVHs

QA (solid) and SA (dashed) for Patient 1

DVHs

QA (solid) and Tabu (dashed) for Patient 2

Wall Clock Time

	Patient	Method	Time
and the second s	1	QA	1.00
R R	1	SA	2.89
	1	Tabu	3.23
8 - 4	3		
Mandaulandaulandaulandaulandaulandau	2	QA	1.00
	2	SA	2.67
	2	Tabu	3.67

Results Summary

SA produced best score for both patients QA was second, third QA was fastest, by factors of 2.7 – 3.7 DVHs were compared and similar Plans were not clinically viable due to small number of beamlets

VMAT Treatment

VMAT Optimization

Conclusions

This is first application of QA to IMRT optimization Compared QA to SA and Tabu **Evaluated using clinical DVH-based** objective functions QA hardware will rapidly scale in size Further research on application of QA to VMAT may offer promising returns

YouTube Embeds

Linear Accelerator IMRT Treatment VMAT Treatment

Thoughts and Experiences

Five years of Quantum Programming

Pre-history: Conversation with Geordie Rose

- Sometime in the fall of 2011, after flubbing my first phone interview with GR, I was granted a second chance.
- I remember two questions that he asked:

What is a support vector machine?

What are the odds that a book appearing on the New York Times best seller list in the next ten years will have been written by a machine?

© 2016 D-Wave Systems Inc. All Rights Reserved

Day 1

First NASA Quantum Future Technologies Conference January 17–21, 2012

NASA Ames Research Center • Moffett Field, California

© 2016 D-Wave Systems Inc. All Rights Reserved

Day 14: First things first

E emacs@DDAHL-T410	<u> </u>
File Edit Options Buffers Tools Help	
🗅 🗁 📄 🗶 🔚 🛱 🥱 🐰 🖆 🛍 🖎 🗳	
**************** Monday January 30, 2012 **********************************	
In Burnaby	
Have downloaded emacs 23.3 onto the laptop.	
Have downloaded the Matlab pack.	
The URL for the machine is:	
http://appsqa.internal.dwavesys.com	
The Solver API is at:	
http://appsqa.internal.dwavesys.com/sapi	
The QP API (QP = Quantum Processor) is at:	
http://appsqa.internal.dwavesys.com/qpapi	
	•
-1\ Notes.txt Top L1 (Text Fill) Mark set	 ÷

Day 15: Early software architecture

D-Wave Software Stack

Day 15: Chimera, circa 2012

Day 21 – 22: Hadamard matrices, manually

4x4 Hadamard: QUBO interactions

Problem variables 4 vars Ancillary variables 4 vars 4 vars 4 vars Quadratic 16 terms interactions 6 terms Totals: Variables : 4x10 = 40 Interactions : 18x16+10x6 = 348	
Quadratic 16 terms interactions 6 terms Totals: Variables : 4x10 = 40	4 vars
Totals: Variables : 4x10 = 40	4 vars
Variables : 4x10 = 40	Quadratic U

Day 23: Depression sets in

Day 24: BlackBox restores hope

Internal behavior of the code is unknown

© 2016 D-Wave Systems Inc. All Rights Reserved

Day $25 - \infty$: Problems. Lots of Problems.

graph isomorphism

6

travelling salesman problem

Day 210 – 212: Learning from the Master

Day 250: Polytopes for Adiabatic QC

Chimeratope(1,1,1) $+\sigma_1\sigma_2$ $+\sigma_2$ $+\sigma_1$

Chimeratope(L,M,N) –or– CH(L,M,N)

- L = half number of spins in the unit cell
- M = number of rows
- N = number of columns

Day 270: Automorphism Groups of Chimera

tiling	size	factorization	group	
1x1	1152	2^7 * 3^2	S(2) x S(4)	x S(4)
1x2	27648	2^10 * 3^3	S(2) x S(4)	x S(4) x S(4)
1x3	663552	2^13 * 3^4	S(2) x S(4)	x S(4) x S(4) x S(4)
1x4	15925248	2^16 * 3^5	S(2) x S(4)	x S(4) x S(4) x S(4) x S(4)
2x1	27648	2^10 * 3^3	S(2) x S(4)	x S(4) x S(4)
2x2	2654208	2^15 * 3^4	D(4) x S(4)	x S(4) x S(4) x S(4)
2x3	31850496	2^17 * 3^5	S(2) X S(2)	x S(4) x S(4) x S(4) x S(4) x S(4)
2x4	764411904	2^20 * 3^6	S(2) X S(2)	x S(4) x S(4) x S(4) x S(4) x S(4) x S(4)
3x1	663552	2^13 * 3^4	S(2) x S(4)	x S(4) x S(4) x S(4)
3x2	31850496	2^17 * 3^5	S(2) x S(2)	x S(4) x S(4) x S(4) x S(4) x S(4)
3x3	1528823808	2^21 * 3^6	D(4) x S(4)	x S(4) x S(4) x S(4) x S(4) x S(4)
3x4	1.8345885696e10	2^23 * 3^7	S(2) x S(2)	x S(4)
4x1	15925248	2^16 * 3^5	S(2) x S(4)	x S(4) x S(4) x S(4) x S(4)
4x2	764411904	2^20 * 3^6	S(2) x S(2)	x S(4) x S(4) x S(4) x S(4) x S(4) x S(4)
4x3	1.8345885696e10	2^23 * 3^7	S(2) x S(2)	x S(4)
4x4	8.8060251341e11	2^27 * 3^8	D(4) X S(4)	x S(4)

Day 574: Conquering the Unit Cell

emacs@DDAHL-T410	
return	_
[[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,	
40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 65, 66, 67, 68, 69,	
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,	
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,	
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,	
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 134,	
136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162,	
164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190,	
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205,	
206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,	
220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,	
234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,	
248, 249, 250, 251, 252, 253, 254, 255, 256],	
[27, 28, 52, 56, 83, 91, 113, 114, 115, 116, 143, 144, 156, 160, 174, 176,	
184, 192, 201, 205, 217, 218, 229, 230, 237, 238, 242, 246],	
[9, 28, 32, 41, 52, 60, 73, 75, 87, 95, 105, 115, 116, 137, 158, 160, 169,	
170, 178, 182, 201, 205, 215, 216, 225, 233, 246, 248],	
[16, 28, 32, 46, 48, 56, 64, 95, 110, 120, 138, 155, 156, 170, 174, 178,	
180, 201, 205, 211, 219, 229, 230, 237, 238, 241, 245],	
[1, 3, 20, 28, 33, 34, 52, 56, 67, 75, 91, 95, 101, 103, 119, 120, 137,	
138, 154, 156, 162, 166, 182, 190, 201, 205, 223, 224, 229, 237, 254,	
-(Unix) ListOrbitEXT4 Top L1 (Fundamental)	
End of buffer	_

Mathieu Dutour Sikiric

Day 370: Vesuvius

7/14

Day 395: Big B

© 2016 D-Wave Systems Inc. All Rights Reserved

Day $455 - \infty$: Training

Day 720: Washington

<u>*</u>		8		8			8			8			8			8			8	_		8	_		8			8	_		8
	••				0	•		0	•		00	•		00	•		00	•		0	•		••	•		••	•		0	•	
										0		_										-						•			
000	00		00		0	•		0	•		••	•		00	•		••	•		••	•		00	•		00	•		••	•	
ŏ		õ–		ð		-	•		-	•	$\frac{1}{1}$	+	•	-		ŏ	\square		ð	1	-	ð	1	-	ð	\square	-	ð		+	Ō
	- 4	8		8			8			8			8			8			8			8			8			8			8
				8		•	8		•	0		00	0	2	00	8		0	0		•	0	••	•	8		•	8	1	•	8
						_			_	0		_	0	_		0				_	_	•		_			_	•		_	•
00	00)Ő		0	•		0	•		00	¢	0	••	•	0	90	00		Þ	•		00	¢	9	••	•		••	•	
õ—		õ–		õ			õ			ð			0			õ	1		-			ð	1	-	•	\square		ð			ð
8				Z			8	00		8			8	00	00	8		0	8		0	8		0	8			8			8
8	-	8		2			8						8			8		0.0	8	1	-	0		-	8		0.	8			8
				•			Ō					_				ò		_				-						ò		_	
•••	00		00		0	•			(••	•		••	•		••	•		••	•		••	•		••	•		••	•	
ĕ		ŏ		ð			Ŏ			ð	1	-	Ŏ			Ö		_	Ŏ			Õ		-	Õ	\square		ð		-	ŏ
•				8			8		0.0	8			8			8		00	8	00		8			8			8		•	0
8		87		•			8			8			8			8	7		8	1		5	4		¥	1		0	1		8
8						_	8		_	2		-	8				-		8		_	2	_	_	8			8		_	
	••		00)0	Ó		0	•		00	•		00	•		Þ	¢		90	•		••	•		••	•		00	¢	0
ŏ		Ĭ		ŏ			•			۲		-	-0			•			ě			•		-	۲			-0			
8		8		2			ŝ			8			8		00	8		~	8			8			8			8			8
				8			V			8			8			8		-	8			5	4	-	8				4		8
•		0		8			8		_	8		-	8			8		_	8			8	_	_	8		_	8		-	8
•••	00		00		0	Ý		•	•		••	•		00	•	Ö	••	•		••	•		00	•		••	•		••	•	
ě –				ŏ			•		-	0		+	•			0			•		-	0		-	•			•		-	0
8				8			8		-	8	00	-	8			•		0	8		0	8		0	8			8			8
8	$- \mathbb{R}$	8		8			8	7		00			00			8	7		8	Ĩ		8	1		8			8	1		8
				•		-	0		_		\square	-		\square		0	+		0	\square		•	$\left \right $	_	•	-	_	•	-	-	•
00	00				ò	-			•		00	Ó		00	00		ò	•					00	•		Ö	¢.		00	Ó	
¥—	\rightarrow	ē—	 	ð-			ð	-		ð			ŏ	/		ð	·		8	~		ð			ŏ			ð	·		-8

Day -8760: Archaeology of Map Coloring

Neural Network Algorithm for an NP-Complete Problem: Map and Graph Coloring

Edward Denning Dahl, L-298

Lawrence Livermore National Laboratory P. O. Box 808 Livermore, CA 94550

1. Introduction

The four color conjecture¹ states that any map drawn on a plane or sphere can be colored with four colors so that no two countries which share a border have the same color. The proof of this appealing conjecture took more than one hundred years, and on the order of 10^{10} computer operations.² Unfortunately, the proof of this conjecture is not constructive. In fact, there is no algorithm which is guaranteed to color an arbitrary planar map without essentially resorting to exhaustive search. The absence of such an algorithm extends to a class of problems which generalizes the task of coloring a planar map with four colors. In the general problem, the map is not necessarily planar, but may lie on a more complicated surface such as a torus with several holes. To complete the specification of the general problem, pick a positive integer K which sets the number of colors available for use in coloring the map. The problem is to decide whether a K-coloring of the map exists: that is, an assignment of colors to regions on the map so that regions sharing a border receive different colors.

Since 1971 and the proof of Cook's Theorem,³ the notion of NP-Completeness has been made precise. For a problem to be NP-Complete it is required that one be able to find the solution to the problem in an amount of time polynomial in the problem size, provided one uses the very special model of computation represented by a non-deterministic Turing Machine. Secondly, an NP-Complete problem is at least as hard as any problem which satisfies the first criteria. Deciding whether a non-planar map is K-colorable is an NP-Complete Problem.⁴

John Hopfield has demonstrated⁵ that a Neural Network can provide a heuristic technique for solving the Traveling Salesman Problem (TSP). In one version of the Traveling Salesman Problem one is given some number of cities, the pairwise distances between all the cities, and some fixed length *L*. One must then decide whether there is some tour through the cities which visits each one once, and has total length length length the bound *L*. This problem is NP-Complete,⁶ and thus equivalently difficult to the Map K-colorability problem.

It is natural to wonder whether a Neural Network solution exists for the Map K-colorability problem, given that both it and the TSP are equivalently hard and that a Neural Net solution exists for the latter problem. We demonstrate that a Neural Network solution does exist for the Map K-colorability problem. The connectivity of the neurons in the net follows simply from the connectivity of the regions in the map. The dynamics of the

 Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-ENO-48.

- 1 K. O. May, The Origin of the Four Color Conjecture. Isis, vol. 56, pp. 346-348 (1965).
- 2 T. L. Saaty and P. C. Kainen, The Four-Color Problem. McGraw-Hill, Inc. (1977).
- 3 S. A. Cook, Proc. 3rd Ann. ACM Symp. on Theory of Computing. New York, 151-158 (1971).

⁴ R. M. Karp, Complexity of Computer Computations. R. E. Miller and J. W. Thatcher (eds.), Plenum Press, New York, 85-103 (1972).

5 J. J. Hopfield and D. W. Tank, Biol. Cyber., Vol. 52, 141 (1985).

⁶ M. R. Garey and D. S. Johnson, Computers and Intractibility. Fereman and Company, San Francisco (1979).

Day 580: Map coloring on a quantum computer

# of colors	Needle	Haystack	N/H
3	1728	$3^{13} = 1.6 \times 10^6$	0.0011
4	653184	$4^{13} = 6.7 \times 10^7$	0.0097

Day 610: Static decomposition

US states/MATLAB

# of colors	Needle	Haystack	N/H
3	0	$3^{49} = 2.4 \times 10^{23}$	0
4	25623183458304	$4^{49} = 3.2 \times 10^{29}$	8x10 ⁻¹⁷

Day 720: Dynamic decomposition / qbsolv

© 2016 D-Wave Systems Inc. All Rights Reserved

Day 900: Dynamic decomposition / qbsolv

© 2016 D-Wave Systems Inc. All Rights Reserved

Day 735: DEQO – the predecessor of ToQ

Deqo: A Direct Embedding Quantum Optimizer

E. D. Dahl, D-Wave Systems

January 24, 2014

Abstract

Deqo is a prototype compiler for the D-Wave System. It implements a simple language designed for constraint satisfaction problems (CSP) defined over both boolean and small integer variables. Deqo assumes its CSP has locality: in other words, it consists of a set of constraints each of which involves a small number of available variables. The compilation model proceeds by applying a sequence of transformations which move the problem representation closer to the native quantum machine instruction (QMI) of the D-Wave System. Each transformation is described in the context of a simple example. We conclude by discussing possible extensions to the compilation model.

Day 950 : Map coloring made easy / ToQ

Day 1165: Sudoku

then
 echo "usage: driver.bash <sudoku-file>"
 exit 1
fi

s4.bash < s3.out > s4.out --\--- driver.bash Top L1 (Shell-script[bash])------Indentation setup for shell type bash

Day $\pi * 365$: The Virtuous Cycle

© 2016 D-Wave Systems Inc. All Rights Reserved

Day 1642: Virtual Full Yield

Submit Problem

Any Day, All Day

Problem	Technique
Hadamard matrices	Direct embedding
Ramsey lower bounds & more	BlackBox (Qsage)
Travelling Salesman Problem	BlackBox, QUBO, Parallel Update
Quadratic Assignment Problem	BlackBox, QUBO
Cyclic Ordering	Blackbox / Sorting network
Graph Isomorphism	Blackbox / Sorting network
Map Coloring	Various
Hello World	SAPI
Sudoku	qbsolv
Factoring	qbsolv

Perspectives about what might work best

STONEBRAKER ALGORITHM

Code section 2. Until (it works) { Come up with a new idea; Prototype it with the help of superb computer scientists; Persevere, fixing whatever problems come up; always remembering that it is never too late to throw everything away; } Likely copyright violation DOI:10.1145/2869958 The D-Wave Trinity Optimization & Constraint Satisfaction Problems

Machine Learning

Sampling

Day 1721: Today

© 2016 D-Wave Systems Inc. All Rights Reserved

