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Matrix factorization is a fundamental applied math problem

» SVD: A= UXV* where ¥ is diagonal, U, V are unitary
» QR: A= QR where Q is orthogonal, R is upper triangular

» LU: A= LU where L is lower triangular and R is upper
triangular

» Cholesky: A = LL* where L is lower triangular
» NMF: A~ BC where Bjj > 0 and C; >0
» D-Wave NMF: A~ BC where Bjj >0 and C; € {0,1}



Low-rank matrix factorizations




Unsupervised ML via matrix factorization
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Lee & Seung (Nature, 1999)
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A=BC

Each column of A is a vectorized
version of an image of a face

Each row of A corresponds to a
particular pixel in the images

Each column of B is a “feature”
that is used to reconstruct the
image

Each row of B corresponds to a
particular pixel in the images

Each column of C corresponds to
an image and describes how each
feature is present in the image

Each row of C corresponds to a
feature and describes how that
feature is present in all the images



Unsupervised ML via matrix factorization on the D-Wave
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Lee & Seung (Nature, 1999)




Are some of those features solid black? No
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Pros/cons: D-Wave NMF versus classical NMF

Forget the D-Wave and just view this as a method

Pros

» The D-Wave NMF's C matrix is ~ 85% sparse, but classical
NMF’s C matrix is only ~ 13% sparse

» The components of the D-Wave NMF's C matrix require
fewer bits than classical NMF’'s C matrix (1 bit vs. 64 bits)

> Viewed as lossy compression, the D-Wave NMF compresses
more densely

Cons

» Classical NMF's reconstructions have slightly less than half as
much error as D-Wave NMF's reconstructions

> Viewed as lossy compression, the D-Wave NMF loses more
information

» The B matrices are about 40% sparse for classical NMF, but
dense for D-Wave NMF



How to do it?

v

Use “Alternating Least Squares”

1. Randomly generate a binary C

2. Solve B = argminx||A — XC||r classically

3. Solve C = argminx||A — BX||r on the D-Wave
4. Go to 2

Step 3 is the interesting/D-Wave part

In our analysis, A is 361 x 2429, B is 361 x 35 and C is
35 x 2429.

C has O(10°) binary variables — far too many for the D-Wave,
but. ..
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Step 3 in more detail

C = argminx||A — BX||r where C and X are 35 x 2429

» Step 3 is formulated above as a problem in 35 x 2429 binary
variables, but it decomposes ( “partitions”) into 2429 problems
with 35 binary variables each

» C; = argminy||A; — Bx||2 where C; is the ith column of C and
x consists of 35 binary variables

» 35 binary variables fit on the D-Wave easily (can go to 49
with the VFYC)

» Imagine a Beowulf cluster of these. ..
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What about performance?
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What about performance?
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» The D-Wave wins the cumulative time-to-targets modest
number of anneals are used (up to 1000), but loses to Gurobi
when 10,000 anneals are used

» gbsolv wins most problems, but loses very badly when it loses

> Gurobi takes too long to get rolling on the short time scales,
but wins over longer times



What about performance including non-annealing time?

» Solving 2429 QUBOs repeatedly can take a long time unless
you are careful
» Performance roadblocks
» ThreeQ.jl “symbolic” mode
» SAPI embedding
» SAPI async_solve_qubo+await_completion+p.result()
» By overcoming the performance roadblocks, executing “Step
3" on a 361 x 2429 matrix can be done in a few minutes

> In the cumulative time-to-targets benchmark, gbsolv could
sometimes lose even when 1/0 time was included



What about performance including non-annealing time?

ThreeQ.jl “symbolic” mode

function setupsmallqubo(A, B, j)
m = ThreeQ.Model(...)
QThreeQ.defvar m Ccolj[1:size(B, 2)]
for k = 1:size(B, 2)
lincoeff = 0.0
for i = 1:size(A, 1)
lincoeff += B[i, k] * (B[i, k] - 2 * A[i, j1)
end
@ThreeQ.addterm m lincoeff * Ccolj[k]
for 1 = 1:k - 1
quadcoeff = 0.0
for i = 1:size(A, 1)
quadcoeff += 2 * B[i, k] * B[i, 1]
end
Q@ThreeQ.addterm m quadcoeff * Ccoljl[k] *
Ccoljl1]
end
end
return m, Ccolj

end

function setupsmallqubo(A, B, j)
Q = zeros(size(B, 2), size(B, 2))
for k = 1:size(B, 2)
for i = 1:size(A, 1)
Qlk, k1 += B[i, k] * (B[i, k]l - 2 * A[i, j1)
end
for 1 = 1:k - 1
for i = 1:size(A, 1)
Qlk, 1] += 2 * B[i, k] * B[i, 1]
end
end
end
return Q

end



What about performance including non-annealing time?
SAPI embedding

» SAPI's embed_problem uses a “one-step” embedding process
» Works great if you only have to embed the problem once
» Slow if you have to embed the same problem repeatedly
» Wrote a custom replacement for SAPI's embed_problem
using a “two-step” embedding process
1. Find the couplings that are used as part of the embedding and
determine how the coefficient will be spread across the

couplers/qubits. Do this once.
2. Use the result from step 1 to perform the embedding. Do this

repeatedly.
» Also important to call find_embedding only once (obviously)



What about performance including non-annealing time?
SAPI async_solve_qubo+await_completion+p.result()

» Downloading 2429 results from the D-Wave system in serial is
slow
> l.e., 2429 calls to p.result () in serial is slow
» Use multiple processes to download results in parallel
» Use async_solve_qubo then await_completion to wait for
nworkers () results to be ready
» Effectively perform one p.result () for each worker process to
download the results in parallel
» Actually, had to reimplement p.result() from scratch,
probably due to an issue with julia’s python interface
» Probably a lot of room for improvement here
» For example, often don't need to download all the samples —
just the best will do
» Would be great to do the computation closer to the D-Wave
to reduce round-trip time



Conclusions

> Utilized the D-Wave to solve a practical, unsupervised,
machine-learning problem
» The D-Wave outperforms two state-of-the-art classical codes
in a cumulative time-to-target benchmark when a
low-to-moderate number of samples are used
» Limitations in getting problems into/out of the D-Wave make
these benefits hard to leverage, but the situation should
improve with future D-Wave hardware
» Custom heuristics would likely beat the D-Wave even in this
benchmark
> Large datasets can be analyzed on the D-Wave with this
algorithm
» We factored a 361 x 2429 matrix for consistency with Lee &
Seung (Nature, 1999), but going larger is not a problem
» The D-Wave only limits the rank of the factorization
» Not a major limitation, because we want the rank to be small
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