Nonnegative/Binary Matrix Factorization with a
D-Wave Quantum Annealer

Daniel O'Malley (EES-16), Velimir V. Vesselinov (EES-16)
Boian S. Alexandrov (T-1), Ludmil B. Alexandrov (T-6)

Los Alamos National Laboratory

D-Wave Qubits Users Conference
September, 27 2017

LA-UR-17-23437

A
. IRAIamos

NATIONAL LABORATORY
EST.1943

Matrix factorization is a fundamental applied math problem

» SVD: A= UXV* where ¥ is diagonal, U, V are unitary
» QR: A= QR where Q is orthogonal, R is upper triangular

» LU: A= LU where L is lower triangular and R is upper
triangular

» Cholesky: A = LL* where L is lower triangular
» NMF: A~ BC where Bjj > 0 and C; >0
» D-Wave NMF: A~ BC where Bjj >0 and C; € {0,1}

Low-rank matrix factorizations

Unsupervised ML via matrix factorization

Original

NMF |

;‘_'__ ' -- E

L EE

Lee & Seung (Nature, 1999)

>

A=BC

Each column of A is a vectorized
version of an image of a face

Each row of A corresponds to a
particular pixel in the images

Each column of B is a “feature”
that is used to reconstruct the
image

Each row of B corresponds to a
particular pixel in the images

Each column of C corresponds to
an image and describes how each
feature is present in the image

Each row of C corresponds to a
feature and describes how that
feature is present in all the images

Unsupervised ML via matrix factorization on the D-Wave

Original

sezcrsa i vl
e B E

T
ol E.-; 3|
el vy
e ~~“-
3 foar s o
& i\ H
~ o - X ._* 44| = [
s il ! o B N k
PCA
-': et b i .‘1
TR := -

Lee & Seung (Nature, 1999)

Are some of those features solid black? No

-

s awmE hd ll
b

o ﬂ.!l:

?EI’-:E d

Iw il -F-r._
!1“- “leowh @

= e [E -‘-J

Pros/cons: D-Wave NMF versus classical NMF

Forget the D-Wave and just view this as a method

Pros

» The D-Wave NMF's C matrix is ~ 85% sparse, but classical
NMF’s C matrix is only ~ 13% sparse

» The components of the D-Wave NMF's C matrix require
fewer bits than classical NMF’'s C matrix (1 bit vs. 64 bits)

> Viewed as lossy compression, the D-Wave NMF compresses
more densely

Cons

» Classical NMF's reconstructions have slightly less than half as
much error as D-Wave NMF's reconstructions

> Viewed as lossy compression, the D-Wave NMF loses more
information

» The B matrices are about 40% sparse for classical NMF, but
dense for D-Wave NMF

How to do it?

v

Use “Alternating Least Squares”

1. Randomly generate a binary C

2. Solve B = argminx||A — XC||r classically

3. Solve C = argminx||A — BX||r on the D-Wave
4. Go to 2

Step 3 is the interesting/D-Wave part

In our analysis, A is 361 x 2429, B is 361 x 35 and C is
35 x 2429.

C has O(10°) binary variables — far too many for the D-Wave,
but. ..

v

v

v

Step 3 in more detail

C = argminx||A — BX||r where C and X are 35 x 2429

» Step 3 is formulated above as a problem in 35 x 2429 binary
variables, but it decomposes (“partitions”) into 2429 problems
with 35 binary variables each

» C; = argminy||A; — Bx||2 where C; is the ith column of C and
x consists of 35 binary variables

» 35 binary variables fit on the D-Wave easily (can go to 49
with the VFYC)

» Imagine a Beowulf cluster of these. ..

v

What about performance?

10 anneals 100 anneals 1000 anneals

10000 anneals
@20ps/anneal @20ps/anneal @20ps/anneal

@20ps/anneal

log1o(TTT [s])

k T T T T k
0 10000 20000 0 10000 20000 0
QUBO number QUBO number QUBO number

T T k T T T
10000 20000 0 5000 1000015000
QUBO number
* gbsolv « Gurobi ~— D-Wave 2X

What about performance?

51 ~@— gbsolv
~®- Gurobi
annealing time

10 anneals 100 anneals 1000 anneals 10000 anneals

E 2

] 5

$3 2,

] —

k] E

H)

3 g7 s

5 -+ i—— 1

H

g 2
1060020000 k00 20000 10000 20000 © 5000 1050015000
U8 mumber QUBO number QUBO number QUBO umber

s - Guob — Dwaveax
1

1.0 15 2.0 25 3.0 35 4.0
log,g(number of anneals)

» The D-Wave wins the cumulative time-to-targets modest
number of anneals are used (up to 1000), but loses to Gurobi
when 10,000 anneals are used

» gbsolv wins most problems, but loses very badly when it loses

> Gurobi takes too long to get rolling on the short time scales,
but wins over longer times

What about performance including non-annealing time?

» Solving 2429 QUBOs repeatedly can take a long time unless
you are careful
» Performance roadblocks
» ThreeQ.jl “symbolic” mode
» SAPI embedding
» SAPI async_solve_qubo+await_completion+p.result()
» By overcoming the performance roadblocks, executing “Step
3" on a 361 x 2429 matrix can be done in a few minutes

> In the cumulative time-to-targets benchmark, gbsolv could
sometimes lose even when 1/0 time was included

What about performance including non-annealing time?

ThreeQ.jl “symbolic” mode

function setupsmallqubo(A, B, j)
m = ThreeQ.Model(...)
QThreeQ.defvar m Ccolj[1:size(B, 2)]
for k = 1:size(B, 2)
lincoeff = 0.0
for i = 1:size(A, 1)
lincoeff += B[i, k] * (B[i, k] - 2 * A[i, j1)
end
@ThreeQ.addterm m lincoeff * Ccolj[k]
for 1 = 1:k - 1
quadcoeff = 0.0
for i = 1:size(A, 1)
quadcoeff += 2 * B[i, k] * B[i, 1]
end
Q@ThreeQ.addterm m quadcoeff * Ccoljl[k] *
Ccoljl1]
end
end
return m, Ccolj

end

function setupsmallqubo(A, B, j)
Q = zeros(size(B, 2), size(B, 2))
for k = 1:size(B, 2)
for i = 1:size(A, 1)
Qlk, k1 += B[i, k] * (B[i, k]l - 2 * A[i, j1)
end
for 1 = 1:k - 1
for i = 1:size(A, 1)
Qlk, 1] += 2 * B[i, k] * B[i, 1]
end
end
end
return Q

end

What about performance including non-annealing time?
SAPI embedding

» SAPI's embed_problem uses a “one-step” embedding process
» Works great if you only have to embed the problem once
» Slow if you have to embed the same problem repeatedly
» Wrote a custom replacement for SAPI's embed_problem
using a “two-step” embedding process
1. Find the couplings that are used as part of the embedding and
determine how the coefficient will be spread across the

couplers/qubits. Do this once.
2. Use the result from step 1 to perform the embedding. Do this

repeatedly.
» Also important to call find_embedding only once (obviously)

What about performance including non-annealing time?
SAPI async_solve_qubo+await_completion+p.result()

» Downloading 2429 results from the D-Wave system in serial is
slow
> l.e., 2429 calls to p.result () in serial is slow
» Use multiple processes to download results in parallel
» Use async_solve_qubo then await_completion to wait for
nworkers () results to be ready
» Effectively perform one p.result () for each worker process to
download the results in parallel
» Actually, had to reimplement p.result() from scratch,
probably due to an issue with julia’s python interface
» Probably a lot of room for improvement here
» For example, often don't need to download all the samples —
just the best will do
» Would be great to do the computation closer to the D-Wave
to reduce round-trip time

Conclusions

> Utilized the D-Wave to solve a practical, unsupervised,
machine-learning problem
» The D-Wave outperforms two state-of-the-art classical codes
in a cumulative time-to-target benchmark when a
low-to-moderate number of samples are used
» Limitations in getting problems into/out of the D-Wave make
these benefits hard to leverage, but the situation should
improve with future D-Wave hardware
» Custom heuristics would likely beat the D-Wave even in this
benchmark
> Large datasets can be analyzed on the D-Wave with this
algorithm
» We factored a 361 x 2429 matrix for consistency with Lee &
Seung (Nature, 1999), but going larger is not a problem
» The D-Wave only limits the rank of the factorization
» Not a major limitation, because we want the rank to be small

ion on the D-Wave

Imizat

PDE-constrained opti

Preview

ing that leverages the

imera solver

2D elliptic PDE using a custom embedd

virtua

| full yield ch

Jas B

2B 52D
V0

Y TR

Ma.u! \ ‘z e
& S S \m,v“ 4
!\! ma\!

‘(

1(\1!
&\AA« > !@&A@V e \;! A Mhrn Zay
3>

\w(A\» Ja
,v(q{ P P
By on
N
N
A o
P P PP
S -A\»M &./v F\MM 7 AN
/o e
A/Q 4 bx
Atz

o D e I R o S 7 Y
»«nvam <P ,!'.m‘v.m &\E %\uv«m m«\u’«m
A=A A N A A A A B A A
-A,«m-.»«« K8 P TP ,w«\-.»«w ,m«\-ﬂa,\ ' -4“
A '\7‘\, A, WA ‘_‘r‘\/ '\.r‘\w A, WBSTA,
@ - Y Y
\.) A»rw. \v>7 W)A TN
7

.
o ﬂ.ﬁ'ﬁa‘m Sy 'ﬂ/«\m
& 5 @ L s

N

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

	fd@rm@0:

