A quantum annealing approach to the Minimum Multicut problem on general graphs

William Cruz-Santos¹ Salvador E. Venegas Andraca² Marco Lanzagorta³

 1 Computer Engineering, CU-UAEM Valle de Chalco, Edo. de México, México 2 Quantum Information Processing Group at Tecnológico de Monterrey, Escuela de Ciencias e Ingeniería 3 US Naval Research Laboratory, 4555 Overlook Ave. SW Washington DC 20375, USA

QUBITS 2017 D-Wave Users Group National Harbor, MD, Sept. 2017

1 Introduction

In this talk,

A would like to discuss the quantum annealing approach to the solution of combinatorial optimization problems:

1 Introduction

In this talk,

A would like to discuss the quantum annealing approach to the solution of combinatorial optimization problems:

 $\mathsf{Problem} \to \mathsf{QUBO} \to \mathsf{Embedding} \ \mathsf{into} \ \mathsf{the} \ \mathsf{hardware}$

It is considered the Minimum Multicut problem which is NP-hard on trees and in general graphs.

1 Introduction

In this talk,

A would like to discuss the quantum annealing approach to the solution of combinatorial optimization problems:

 $\mathsf{Problem} \to \mathsf{QUBO} \to \mathsf{Embedding} \ \mathsf{into} \ \mathsf{the} \ \mathsf{hardware}$

It is considered the Minimum Multicut problem which is NP-hard on trees and in general graphs.

We discuss the limitations of the current family of quantum annealing processors.

Contents

Section 2: Quantum annealing

Section 3: Combinatorial optimization

Section 4: Mapping of the Minimum multicut to QUBO

Section 5: Embedding into the hardware

Section 6: Hardware simulation

Section 7: Summary and conclusions

2 Quantum annealing

 QA annealing is used to travers from the ground state of an initial Hamiltonian to the ground state of the final Hamiltonian. [Finnila et al., 1994] [Kodawaki-Nishimori, 1998] [Farhi et al., 2001]

$$H(\tau) = A(s)H_I + B(s)H_{\text{problem}},$$

$$H_{\mathrm{problem}} = \sum_{i}^{N} h_{i} \sigma_{i}^{z} + \sum_{j>i}^{N} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z}, \hspace{5mm} H_{I} = \sum_{i} \sigma_{i}^{x}$$

$$t_f = 20, \dots, 2000 \mu s$$

$$i\frac{d|\Psi(t)\rangle}{dt} = H(t)|\Psi(t)\rangle$$

$$i\frac{d|\Psi(t)\rangle}{dt} = H(t)|\Psi(t)\rangle$$

Adiabatic Theorem: [BornFock '28, Kato '51]

$$i\frac{d|\Psi(t)\rangle}{dt} = H(t)|\Psi(t)\rangle$$

Adiabatic Theorem: [BornFock '28, Kato '51]

 $|\Psi(0)\rangle$ Ground state of $H(0)\longrightarrow |\Psi(T)\rangle$ ground state of H(T)

$$T \gg \frac{1}{\min_t \{\gamma(t)\}^2}, \quad \gamma = E_1(t) - E_0(t)$$

No crossing in the paths of the corresponding eigenvectors.

$$i\frac{d|\Psi(t)\rangle}{dt} = H(t)|\Psi(t)\rangle$$

Adiabatic Theorem: [BornFock '28, Kato '51]

 $|\Psi(0)\rangle$ Ground state of $H(0) \longrightarrow |\Psi(T)\rangle$ ground state of H(T)

$$T \gg \frac{1}{\min_t \{\gamma(t)\}^2}, \quad \gamma = E_1(t) - E_0(t)$$

No crossing in the paths of the corresponding eigenvectors.

Linear interpolation between H_0 and H_1 : [Farhi et al., 2001]

$$H(s) = (1 - s)H_0 + sH_1, \quad s = \frac{t}{T}.$$

$$A(s) \sim (1 - s), \quad B(s) \sim s$$

$$\begin{split} H(\tau) &= A(s) \sum_i \sigma_i^x + B(s) H_{\text{problem}} \\ H_{\text{problem}} &= \sum_i^N h_i \sigma_i^z + \sum_{j>i}^N J_{ij} \sigma_i^z \sigma_j^z \end{split}$$

$$\begin{split} H(\tau) &= A(s) \sum_i \sigma_i^x + B(s) H_{\text{problem}} \\ H_{\text{problem}} &= \sum_i^N h_i \sigma_i^z + \sum_{j>i}^N J_{ij} \sigma_i^z \sigma_j^z \end{split}$$

$$\begin{split} H(\tau) &= A(s) \sum_i \sigma_i^x + B(s) H_{\text{problem}} \\ H_{\text{problem}} &= \sum_i^N h_i \sigma_i^z + \sum_{j>i}^N J_{ij} \sigma_i^z \sigma_j^z \end{split}$$

[Lanting et al, 2014]

Adiabatic quantum optimization

• The ground state of H_p corresponds to a configuration $\mathbf{s}=(s_1,\ldots,s_N)\in\{+1,-1\}^N$ of spins that minimize the following energy function

$$E(\mathbf{s}) = \sum_{i}^{N} h_i s_i + \sum_{j>i}^{N} J_{ij} s_i s_j.$$

Adiabatic quantum optimization

• The ground state of H_p corresponds to a configuration $\mathbf{s}=(s_1,\ldots,s_N)\in\{+1,-1\}^N$ of spins that minimize the following energy function

$$E(\mathbf{s}) = \sum_{i}^{N} h_i s_i + \sum_{j>i}^{N} J_{ij} s_i s_j.$$

Finding ${\bf s}^*$ with minimum energy $E({\bf s}^*)$ is an NP-hard 1 problem even on planar graphs. [Barahona, 1982]

Adiabatic quantum optimization

• The ground state of H_p corresponds to a configuration $\mathbf{s}=(s_1,\ldots,s_N)\in\{+1,-1\}^N$ of spins that minimize the following energy function

$$E(\mathbf{s}) = \sum_{i}^{N} h_i s_i + \sum_{j>i}^{N} J_{ij} s_i s_j.$$

Finding s^* with minimum energy $E(s^*)$ is an NP-hard ¹ problem even on planar graphs. [Barahona, 1982]

From classical objective function to quantum Hamiltonian

Find the optimal assignment

$$\mathbf{s}^* = (s_1^*, \dots, s_N^*)$$

$$E(\mathbf{s}) = \sum_{i}^{N} h_i s_i + \sum_{i>i}^{N} J_{ij} s_i s_j$$

Find the ground state

$$|\psi_q\rangle = |\mathbf{s}^*\rangle = |s_1^*, \dots, s_N^*\rangle$$

$$H_p = \sum_{i}^{N} h_i \sigma_i^z + \sum_{j>i}^{N} J_{ij} \sigma_i^z \sigma_j^z$$

3 Combinatorial optimization

 $\bullet~\mathrm{NPO}$ is the class of optimization problems, $\mathrm{NP}\text{-hard}$ are the most difficult problems in NPO

• Factor ϵ -approximation algorithms $\mathcal A$ for problem Π ,

$$\forall x \in \Pi : \mathsf{cost}_\Pi(x, \mathcal{A}(x)) \le \epsilon \cdot \mathsf{OPT}(x).$$

NP-hard

NP-complete

NP

• APX \subseteq NPO class of problems that can be approximated in polynomial time for some $\epsilon > 1$.

3 Combinatorial optimization

 $\bullet~\mathrm{NPO}$ is the class of optimization problems, $\mathrm{NP}\text{-hard}$ are the most difficult problems in NPO

• Factor ϵ -approximation algorithms $\mathcal A$ for problem Π ,

$$\forall x \in \Pi : \mathsf{cost}_{\Pi}(x, \mathcal{A}(x)) \le \epsilon \cdot \mathsf{OPT}(x).$$

• APX \subseteq NPO class of problems that can be approximated in polynomial time for some $\epsilon > 1$.

For some problems, it is possible to prove that even the design of an ϵ -approximation algorithm with small ϵ is impossible, unless P = NP.

3 Combinatorial optimization

 $\bullet~\mathrm{NPO}$ is the class of optimization problems, $\mathrm{NP}\text{-hard}$ are the most difficult problems in NPO

• Factor ϵ -approximation algorithms $\mathcal A$ for problem Π ,

$$\forall x \in \Pi : \mathsf{cost}_{\Pi}(x, \mathcal{A}(x)) \le \epsilon \cdot \mathsf{OPT}(x).$$

• APX \subseteq NPO class of problems that can be approximated in polynomial time for some $\epsilon > 1$.

For some problems, it is possible to prove that even the design of an ϵ -approximation algorithm with small ϵ is impossible, unless P = NP.

The concept of inapproximated problems

Theorem [ALM, 1992]: There is a fixed $\epsilon>0$ and a polynomial-time reduction τ from SAT to MAX-3SAT such that for every boolean formula I:

$$\begin{split} I \in \mathsf{SAT} & \Rightarrow & \mathsf{MAX-3SAT}(\tau(I)) = 1 \\ I \notin \mathsf{SAT} & \Rightarrow & \mathsf{MAX-3SAT}(\tau(I)) < \frac{1}{1+\epsilon}. \end{split}$$

In other words, achieving an approximation ratio $1+\epsilon$ for MAX-3SAT is NP-hard.

The concept of inapproximated problems

Theorem [ALM, 1992]: There is a fixed $\epsilon>0$ and a polynomial-time reduction τ from SAT to MAX-3SAT such that for every boolean formula I:

$$\begin{split} I \in \mathsf{SAT} & \Rightarrow & \mathsf{MAX-3SAT}(\tau(I)) = 1 \\ I \notin \mathsf{SAT} & \Rightarrow & \mathsf{MAX-3SAT}(\tau(I)) < \frac{1}{1+\epsilon}. \end{split}$$

In other words, achieving an approximation ratio $1+\epsilon$ for MAX-3SAT is NP-hard.

Classification of inapproximated problems [Arora-Lund, 1996]				
Class	Representative problem	Hard ratio	Best ratio	
	MAX-3SAT	$1 + \epsilon$	1.2987 [AHO ⁺ 97]	
	MULTIWAY CUTS		3/2 - 1/ S [CKR98]	
П	MINIMUM SETCOVER	$O(\log n)$	$1 + \ln n $ [J97]	
Ш	NEAREST LATTICE			
	VECTOR	$2^{n \log^{1-\gamma}}$	Not in APX [ABS+97]	
IV	MAXIMUM CLIQUE	n^{ϵ}	$O\left(\frac{n}{(\log n)^2}\right)$ [BH92]	

Minimum multicut: Given a weighted graph G=(V,E,w) and a set of pairs $H=\{(s_1,t_1),\ldots,(s_k,t_k)\}\subset V\times V$, find a multi-cut with minimum capacity, i.e., a subset $E'\subseteq E$ such that the removal of E' from E disconnects s_i from t_i for every pair (s_i,t_i) , where the capacity of E' is given as $\sum w(e)$.

Minimum multicut: Given a weighted graph G=(V,E,w) and a set of pairs $H=\{(s_1,t_1),\ldots,(s_k,t_k)\}\subset V\times V$, find a multi-cut with minimum capacity, i.e., a subset $E'\subseteq E$ such that the removal of E' from E disconnects s_i from t_i for every pair (s_i,t_i) , where the capacity of E' is given as $\sum_{e\in E'}w(e)$.

Min s-t cut

Minimum multicut: Given a weighted graph G=(V,E,w) and a set of pairs $H=\{(s_1,t_1),\ldots,(s_k,t_k)\}\subset V\times V$, find a multi-cut with minimum capacity, i.e., a subset $E'\subseteq E$ such that the removal of E' from E disconnects s_i from t_i for every pair (s_i,t_i) , where the capacity of E' is given as $\sum_{e\in E'}w(e)$.

Minimum multicut: Given a weighted graph G=(V,E,w) and a set of pairs $H=\{(s_1,t_1),\ldots,(s_k,t_k)\}\subset V\times V$, find a multi-cut with minimum capacity, i.e., a subset $E'\subseteq E$ such that the removal of E' from E disconnects s_i from t_i for every pair (s_i,t_i) , where the capacity of E' is given as $\sum_{e\in E'}w(e)$.

- ullet For k=1,2, it is solvable in polynomial time. [Bollobas, 79] [Seymour, 79]
- For $k \geq 3$, Minimum Multi-Cut becomes APX-hard. [Dahlhaus, 94]
- It is NP-hard even if restricted to trees of height 1. [Garg et al., 97]

QUBO formulation of Minimum multicut in trees

For each edge $e \in G$, $x_e = 1$ (in the cut), 0 (not in the cut)

$$h_G = h_{\mathsf{weight}} + h_{\mathsf{penalty}}$$

1.
$$h_{\text{weight}} = \sum_{e \in G} w(e)(1 - x_e)$$

2. $h_{ extsf{penalty}} = \lambda_{ extsf{path}} \sum_{i=1}^k \prod_{e \in p_i} x_e$

 p_i is the path from s_i to t_i ,

$$\lambda_{\mathsf{path}} = \sum_{e \in p_i} w(e)$$

3. $deg(h_{penalty}) = max_i \{ length(p_i) \}$

There exists a unique path between every pair of vertices in a tree.

Reduction methods

$$f(x) = \sum_{S \subseteq [1,n]} a_S \prod_{j \in S} x_j$$

$$\|\tau_i\|$$

$$f(x) = \min_{w \in \{0,1\}^m} g(x, w)$$

$$\deg\{g(x,w)\} \leq 2$$

- w "ancilla variables"
- au_r "polynomial reduction"
- (a) Negative terms can be reduced using only one extra ancilla variable [Freedman-Drineas, 2005]

$$-x_1x_2\cdots x_d = \min_{w \in \{0,1\}} w \left((d-1) - \sum_{j=1}^d x_j \right)$$

(b) For positive terms, only $\left\lfloor \frac{d-1}{2} \right\rfloor$ new ancilla variables are added.

$$\begin{array}{l} \frac{d}{\prod} x_j = S_2 + \min_{w \in \{0,1\}^k} B - 2AS_1 \\ \text{if } d = 2k + 2, \\ \frac{d}{\prod} x_j = S_2 + \min_{w \in \{0,1\}^k} B - 2AS_1 + w_k(S_1 - d + 1) \\ \text{if } d = 2k + 1. \\ \text{See [Ishikawa, 2011]}. \end{array}$$

(c) In the penalty approach, for each occurrence of xy, a new term is added.

$$\scriptstyle M(xy-2xw-2yw+3w)$$

Upper bound:
$$M=1+2\sum_{S\subseteq \llbracket 1,n\rrbracket}a_S$$

Ancilla variables:
$$O(n^2 \log deg(f))$$

Bad news: large coefficients

Example of reduction (1)

$$H = \{(6,10), (2,18), (11,17), (14,19), (8,13), \\ (10,11), (3,5), (13,17), (7,14), (6,20)\}$$

$$\begin{array}{lll} h_G & = & 14 - x_1 - x_2 - x_3 - x_4 + 9x_5 - x_6 - \\ & x_7 - x_8 - x_9 - x_{10} - x_{11} - x_{12} - x_{13} + \\ & 9x_{14} + 10x_1x_2x_3x_4 + 10x_6x_7 + 10x_6x_8x_9 + \\ & 10x_2x_3x_4x_5x_{10}x_{11} + 10x_3x_4x_8 + 10x_2x_3x_{12} + \\ & 10x_2x_6x_7x_8 + 10x_2x_{12}x_{13} \end{array}$$

 $h_G^{
m qubo}$: 22 logical variables, 51 physical qubits

Logical graph of h_G^{qubo} .

Embedding into the Chimera. 13/20

Example of reduction (2)

$$H = \{(6,10), (2,18), (11,17), (14,19), (8,13), (10,11), (3,5), (13,17), (7,14), (6,20)\}$$

$$\begin{array}{lcl} h_G & = & 14 - x_1 - x_2 - x_3 - x_4 + 9x_5 - x_6 - \\ & x_7 - x_8 - x_9 - x_{10} - x_{11} - x_{12} - x_{13} + \\ & 9x_{14} + 10x_1x_2x_3x_4 + 10x_6x_7 + 10x_6x_8x_9 + \\ & 10x_2x_3x_4x_5x_{10}x_{11} + 10x_3x_4x_8 + 10x_2x_3x_{12} \\ & 10x_2x_6x_7x_8 + 10x_2x_{12}x_{13} \end{array}$$

Scalability of embedding

		logical variables	
n	k	\overline{H}	H_{qubo}
20	3	10	17
30	5	14	23
45	6	22	37
100	30	75	199
100	130	97	402
100	200	99	559

Setup: $N_r = 100000$ readouts over 100 gauges.

 $h_G^{
m qubo}$: 22 logical variables, 51 physical qubits

QUBO formulation of Minimum multicut on general graphs

Given a graph G=(V,E) and a set of pairs $H=\{(s_1,t_1),\ldots,(s_k,t_k)\}$. The Minimum multicut problem can be logically formulated as follows:

$$\min_{C \subseteq E} |C| \cdot \bigwedge_{(s_i, t_i) \in H} \neg \mathsf{connected}(s_i, t_i, C)$$

where

$$\mathsf{connected}(s_i, t_i, C) \equiv \forall U \subseteq V. \varphi(s_i, t_i, C)$$

and

$$\varphi(s_i, t_i, C) \equiv ((s_i \in U \land t_i \notin U) \rightarrow \exists x \in U. \exists y \notin U. \exists e \in E. inc(x, e) \land inc(y, e) \land e \notin C)).$$

To verify if a given subset $C\subseteq E$ is a cut in G that disconnect every pair (s_i,t_i) , then it is sufficient to find a subset $U\subseteq V$ such that $\neg \mathsf{connected}(s_i,t_i,C)$ is true.

Mapping: Logical variables y_{uw} and x_v^i

- For each $\{u,w\} \in E$, $y_{uw} = 1$ (0) if $\{u,w\}$ is (not) selected for a cut.
- For each $v \in V$ and i = 1, ..., k, $x_v^i = 1$ (0) if v is (not) in U where U is a subset of V.

Construction: Let f_G be defined as

$$f_G = \mathsf{card}(y_{uw}) + \alpha \cdot \mathsf{penalty}(x_v, y_{uw}, H)$$

where

$$\operatorname{\mathsf{card}}(y_{uw}) = \sum_{\{u,w\} \in E} y_{uw}$$
 and

$$\begin{array}{ll} \mathsf{penalty} & = & \sum_{i=1}^k \bigl(\neg (x^i_{s_i} \oplus x^i_{t_i}) + \sum_{\{u,w\} \in E} (x^i_u \oplus x^i_w) \oplus y_{uw} \bigr) \\ \\ & = & \sum_{i=1}^k \bigl(1 - x^i_{s_i} - x^i_{t_i} + 2 x^i_{s_i} x^i_{t_i} + \\ \\ & & \sum_{\{u,w\} \in E} \bigl(x^i_u + x^i_w + y_{uw} - 2 x^i_u x^i_w - 2 x^i_u y_{uw} - 2 x^i_w y_{uw} + 4 x^i_u x^i_w y_{uw} \bigr) \bigr) \end{array}$$

Using the Ishikawa method we obtain

$$\begin{array}{ll} \text{penalty} & = & \displaystyle \sum_{i=1}^k \bigl(1 - x_{s_i}^i - x_{t_i}^i + 2 x_{s_i}^i x_{t_i}^i + \\ & \displaystyle \sum_{\{u,w\} \in E} \bigl(x_u^i + x_w^i + y_{uw} - 2 x_u^i x_w^i - 2 x_u^i y_{uw} - \\ & \displaystyle 2 x_w^i y_{uw} + 4 \bigl(x_u^i x_w^i + x_u^i y_{uw} + x_w^i y_{uw} + \\ & \displaystyle 2 x_{uw}^i \bigl(1 - x_u^i - x_w^i - y_{uw}\bigr)\bigr)\bigr) \Bigr) \\ & = & \displaystyle \sum_{i=1}^k \bigl(1 - x_{s_i}^i - x_{t_i}^i + 2 x_{s_i}^i x_{t_i}^i + \\ & \displaystyle \sum_{\{u,w\} \in E} \bigl(x_u^i + x_w^i + y_{uw} + 2 x_u^i x_w^i + 2 x_u^i y_{uw} + 2 x_w^i y_{uw} + \\ & \displaystyle 4 z_{uw}^i \bigl(1 - x_u^i - x_w^i - y_{uw}\bigr)\bigr) \Bigr) \end{array}$$

where z_{uw}^i are ancilla variables.

$$f_G$$
 uses $k(n+m)+m$ variables.

 α is upper bounded by $\operatorname{card}(y_{uw})$

Example of construction

Boolean variables to represent the given problem:

$$x_1^1, x_2^1, x_3^1, x_4^1, x_5^1, x_6^1, x_1^2, x_2^2, x_3^2,$$

 $x_4^2, x_5^2, x_6^2, y_{12}, y_{13}, y_{16}, y_{23}, y_{25},$
 $y_{34}, y_{45}, y_{46}, y_{56}$

Ancilla variables

Logical graph of $f_G^{\rm qubo}$

5 Summary and conclusions

٠.	Summary and conclusions				
\(\)	The programming model is problem dependent.				
\$	Can we avoid the reduction of pseudo-Boolean functions into QUBO?				
\$	The minimum embedding is not always the best choice.				
\$	Approximate solutions are also useful.				

♦ To investigate programming inapproximated problems.

Thanks for your kind attention!

We thank to USRA (*Universities Space Research Association*) for support this project.

Contact: wdelacruzd@uaemex.mx