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1 Introduction

In this talk,

o A would like to discuss the quantum annealing approach to the solution of
combinatorial optimization problems:

Problem — QUBO — Embedding into the hardware

It is considered the Minimum Multicut problem which is NP-hard on trees
and in general graphs.

o We discuss the limitations of the current family of quantum annealing
processors.
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Cost

2 Quantum annealing

e QA annealing is used to travers from the ground state of an initial
Hamiltonian to the ground state of the final Hamiltonian. [Finnila et al.,
1994] [Kodawaki-Nishimori, 1998] [Farhi et al., 2001]
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Adiabatic evolution
LA ()

dt
Adiabatic Theorem: [BornFock '28, Kato '51]

|¥(0)) Ground state of H(0) —|¥(T")) ground state of H(T")

= H(®)[¥(t))

1

T>>Wa

v = Ex(t) — Eo(t)
Linear interpolation between Hy and Hi: [Farhi et al., 2001]
t
H(s)=(1-—s)Ho+ sHi, s= T
A(s) ~(1—s), B(s)~s
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(Experimental) Quantum annealing

H(T) = A(S) Z 0-7?: + B(S)Hproblem
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(Experimental) Quantum annealing

H(T) = A(S) Z Uiz + B(S)Hproblem
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Hproblem = E hio'i + E Jijai gj
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[Lanting et al, 2014]
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Adiabatic quantum optimization

e The ground state of H,, corresponds to a configuration
s = (s1,...,5n) € {+1, =1} of spins that minimize the following energy
function

N N
E(S) = Z his; + Z Jijsisj.

Jj>i



Adiabatic quantum optimization

e The ground state of H,, corresponds to a configuration
s = (s1,...,5n) € {+1, =1} of spins that minimize the following energy
function

N N
E(S) = Z h;isi + Z Jijsisj.

Jj>i

Finding s* with minimum energy E(s*) is an NP-hard ! problem even on
planar graphs. [Barahona, 1982]

n



Adiabatic quantum optimization

e The ground state of H,, corresponds to a configuration

s = (s1,...,5n) € {+1, =1} of spins that minimize the following energy
function
Z hisi + Z szszsy
Jj>i

Finding s* with minimum energy E(s*) is an NP-hard ! problem even on
planar graphs. [Barahona, 1982]

From classical objective function to quantum Hamiltonian

Find the optimal assignment Find the ground state

s*:(s“{,.. SN : ; |wg>:|s*>:|sT,...,sX)

Zhsz-&-ZJZ]ssj Hp—Zhal—ﬁ—ZJ,,UZUJZ-

j>i Jj>i
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3 Combinatorial optimization

e NPO is the class of optimization problems, NP-hard
are the most difficult problems in NPO NP-hard

e Factor e-approximation algorithms A for problem II,

Vo € II : costr(x, A(z)) < e- OPT(x).

e APX C NPO class of problems that can be
approximated in polynomial time for some € > 1.
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The concept of inapproximated problems

Theorem [ALM, 1992]: There is a fixed € > 0 and a polynomial-time reduction
7 from SAT to MAX-3SAT such that for every boolean formula I:

I €SAT = MAX-3SAT(r(I)) =1

T¢SAT = MAX3SAT((I)) < 1ie'

In other words, achieving an approximation ratio 1 4 ¢ for MAX-3SAT is
NP-hard.



The concept of inapproximated problems

Theorem [ALM, 1992]: There is a fixed € > 0 and a polynomial-time reduction
7 from SAT to MAX-3SAT such that for every boolean formula I:

I €SAT = MAX-3SAT(r(I)) =1

I ¢SAT = MAX-3SAT(r(I)) <

1
1+¢€

In other words, achieving an approximation ratio 1 4 ¢ for MAX-3SAT is

NP-hard.

Classification of inapproximated problems [Arora-Lund, 1996]

Class | Representative problem | Hard ratio | Best ratio

I MAX-3SAT T+e 1.2987 [AHOT97]
MULTIWAY CUTS 3/2 —1/|S| [CKR98]
Il MINIMUM SETCOVER | O(logn) | 1+ In|n| [J97]

Il | NEAREST LATTICE
VECTOR gnlos Not in APX [ABS*97]

IV | MAXIMUM CLIQUE ne 10) (ﬁ) [BHO2]

1-v

MAX -3SAT

MAX3 T(5) cllaue
mcmme
(CLASS |\ LABE COVER
/\ ’CLASS |v v
SETC Ver

/CLASS m I\

/CLASS I >



4 Mapping of the Minimum multicut to QUBO

7~

Minimum multicut: Given a weighted graph G = (V, E,w) and a set
of pairs H = {(s1,t1),...,(sk,tx)} C V x V, find a multi-cut with
minimum capacity, i.e., a subset E/ C E such that the removal of E’
from E disconnects s; from t; for every pair (s;,t;), where the capacity

of E' is given as Y w(e).
ecE’
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4 Mapping of the Minimum multicut to QUBO

7~

Minimum multicut: Given a weighted graph G = (V, E,w) and a set
of pairs H = {(s1,t1),...,(sk,tx)} C V x V, find a multi-cut with
minimum capacity, i.e., a subset E/ C E such that the removal of E’
from E disconnects s; from t; for every pair (s;,t;), where the capacity

of E' is given as Y w(e).
ecE’

Cut
S
0 t]
S
1 tO
Sy 7) t,
Min s-t cut 3-multicut

e For k =1,2, it is solvable in polynomial time. [Bollobas, 79] [Seymour, 79]
e For k > 3, Minimum Multi-Cut becomes APX-hard. [Dahlhaus, 94]
e It is NP-hard even if restricted to trees of height 1. [Garg et al., 97]



QUBO formulation of Minimum multicut in trees

For each edge e € G, z. =1 (in the cut), 0 (not in the cut)

ha = hweight + hpenalty

1. hueight = Y w(e)(1 — ze)
eeG

k
2. hpenalty = )\path Z H Te

i=1e€p;
pi is the path from s; to t;,
Apath = 3 wie)
ecp;
3. deg(hpenalty) = max;{length(p;)}

There exists a unique path between every pair of vertices in a tree.



Reduction methods

f@y= Y as]]a
SC[i,m] jE€S
I~
f(z) = piin g(z,w)

| deg{g(e, w)} < 2

w ‘“ancilla variables”

7 “polynomial reduction”

(a) Negative terms can be reduced using only
one extra ancilla variable
[Freedman-Drineas, 2005]

d
—x1x2-xg= min w| (d—1)— T;
1w2zg= min (( ) jZl ]>

d—1

(b) For positive terms, only { 5

J new ancilla
variables are added.
d
IT z;=5S2+
j=1

min

B—2AS,
we{0,1}F

if d=2k42,

min

B—2AS1 4wy (S —d+1)
we{o,1}F

a
[T z;=S2+
j=1

if d=2k+1.
See [Ishikawa, 2011].

(C) In the penalty approach, for each occurrence
of zy, a new term is added.

[Boros-Hammer, 2002]
M (zy—2zw—2yw+3w)

Upper bound: M=1+2 ¥ ag
sC,n]
Ancilla variables: O(n?logdeg(f))

Bad news: large coefficients



Example of reduction (1)
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H = {(6,10),(2,18),(11,17), (14,19), (8,13),
(10,11), (3,5), (13,17),(7,14), (6,20)}

hg = 14—y —x92—x3 —Tg4+ 925 — x5 —
T7 —xg — T9 — T10 — Ti1 — T12 — 13 + ) g “'
9x14 + 10z1222374 + 102627 + 10262879 +
10x2r32475710711 + 10237428 + 107223712 + A 7N g
10zszgx72xs + 1022212213 @ % @G S
ﬂ s ‘ 5
h‘z‘;bo: 22 logical variables, 51 physical qubits € > & Px

3 3 3

© Q
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Example of reduction (2)

Scalability of embedding

logical variables

n k  TH  Huw
20 3 0 17
30 5 14 23

45 6 22 37

100 30 75 199
100 130 97 402
100 200 99 559

H = {(6,10),(2,18),(11,17),(14,19),(8,13), 200
(10, 11), (3,5),(13,17),(7,14), (6,20)}

ha = 14 —x7 — 22 —x3 — x4 + 925 — 6 —
T7 —Tg — T9 — T10 — T11 — Ti2 — 13 +
9214 + 101222324 + 102627 + 1026289 +
10zsx3x4x5T10211 + 10232428 + 102223212

Number of ocurrences
P N
8

200

100

10z2zex7xs + 102712213 )

E=5 E=6 E=7 E=8
Energy level

H Setup: N,, = 100000 readouts over 100 gauges.

h‘g‘b": 22 logical variables, 51 physical qubits
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QUBO formulation of Minimum multicut on general graphs

Given a graph G = (V, E) and a set of pairs H = {(s1,%1),..., (Sk,tk)}. The
Minimum multicut problem can be logically formulated as follows:

min |C]. /\ —connected(s;, t;, C)

CCE
(s;,t;)€EH
where
connected(s;, t;, C) = VU C V.p(si, ti, C)
and
@(Si,ti,C) = ((SiEU/\ti¢U)—>

Jz € U3y ¢ U.3e € E.inc(z,e) Ninc(y,e) Ae ¢ C)).

To verify if a given subset C' C F is a cut in G that disconnect every pair
(si,ti), then it is sufficient to find a subset U C V such that
—connected(s;, t;, C) is true.
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Mapping: Logical variables 1, and
e For each {u,w} € E, yuw = 1 (0) if {u, w} is (not) selected for a cut.

e ForeachveVandi=1,...,k xi=1(0)if vis (not) in U where U is

a subset of V.

Construction: Let fo be defined as

fa = card(yuw) + o - penalty(zy, Yuw, H)

where

penalty =

card(yuw) = Z Yuw and
{u,w}eE

k

Z(_'(wéz @ xzz) + Z (xzu 53] :BZH) S yuw)

i=1 {u,w}eE

-

(1 — Ty, — Xy, + 205, T4, +

1
Z (@”Z + JTL, + Yuw — QIL‘T;} - Zmiyuw -
{u,w}eE

K3
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Using the Ishikawa method we obtain

penalty

k
E (1 — Ty, — Xy, + 205,14, +
i=1

Z (1"; + l‘:u + Yuw — 21":1,1::11 - 2wiyuw -
{u,w}eE
28 Yuw + A(@hxhy + T Y + ThYuw +
Zuw (1 — Ty — Ty — Yuw))))
Z(l —xy, —mf, + 225, Ty, +
i=1
Z (2 4+ @l + Yuw + 22528 + 227 Yo + 225 Yo +
{u,w}eE

Lz (1 = T — Ty — Yuw)))

where z.,,, are ancilla variables.

fa uses k(n + m) + m variables.

a is upper bounded by card(yuw)



Example of construction

Boolean variables to represent the
given problem:

1 1 1 1 1 1 2 2 2
Ty, T2, T3, T4, Ts, T, T1, T2, T3,

2 2 2
Ty, Ts, Te, Y12, Y13, Y16, Y23, Y25,

Y34, Yas5, Ya6, Y56

Ancilla variables

1 1 1 1 1 1 1 1 1
z z z zZ zZ ¥4 zZ z. ¥4 . b
125 ~135 ~165 ~235 ~25; ~34; ~45; ~46, ~56 Loglcal graph of fgu 0

2 2 2 2 2 2 2 2 2
2125 213, %16, #23; 225, %34, 245, 246, <56
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5 Summary and conclusions

¢ The programming model is problem dependent.

© Can we avoid the reduction of pseudo-Boolean functions into QUBO?

¢ The minimum embedding is not always the best choice.

o Approximate solutions are also useful.

¢ To investigate programming inapproximated problems.
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