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1. Introduction

/"« What is Display Advertising? Example of Display AD

— Advertisements appearing on websites
« Main purpose
— Deliver general advertisements and

brand messages
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x SSP: Supply-Side Platform
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x SSP: Supply-Side Platform
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“+ Advertiser pays a publisher when the ad is clicked

Business Model

« Performance Indicator
— Click Through Rate (CTR)
— Cost Per Impression (CPI)
— Cost Per Click (CPC) ...efc
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4, CTR Prediction with Machine-Learning
7 (Click—through-rate)
~ « Machine-Learning (ML) tech is often used for CTR prediction

« ML has succeeded in this field

Users Matrix expression Click or Not
Prediction

1 M 01 213 - Y
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4 4 Budget Pacing

N

4 Budget pacing is also important

« Control of budget pacing helps

advertisers to...
— Reach a wider range of audience

— Avoid a premature campaign

stop / overspending
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4 4 Budget Pacing
7 ’ ’/’,/"’;‘ . ]
-+ Two lines of strategies
— Bid modification

— Probabillistic throttling

* We propose a different way based on a bipartite
graph and inspired by financial theory

* Our research strengthens existing research rather
than replacing it

pRECRUIT

Recruit Communications 1 O (C)fecpitt Communications Co., Ltd.



=3

/
il
o

s OurApproach: Model and Formulation
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'« Display advertising is
represented by the Users Advertisements

edge-weighted bipartite

matching problem
 Edge weight = CTR

(in our research)

CTR: Click Through Rate
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4 4 Our Approach: Model and Formulation

o 5%
o Control the variation ’
rate of CTR 4%
. . . o 3%
* Find a matching with =
| O 99,
— High CTR
L 1%
— Low variation of CTR
0%
12 01 02 03 04 05 06 07 08 09 10 1
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arg max
9 &

Maximize CTR Low variation Constraint

P : Matrix which expresses a restriction
1 : Vector with all elements as one

a, 8 € R : Control parameters

N,, N, : Size of each vertice

x € {0,1}V*Ne . Decision variable
w : Q — RNe*Ne - Weights vector(CTR, CVR etc) for each edge

2
W € RWaxNe)™ . Covariance matrix of w
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~ Experiments with Real World Data

"« Setup
— Data: our Display Ad campaign data

— Combination: 14-advertisement campaign and 24 user

(cluster)

— CTR and its variation are estimated by historical data

« Sample average and variance-covariance matrix
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A 4 Experiments with Real World Data

/’ M
~+ Use quantum annealing

Users Advertisements

processor, D-Wave 2X

U
)y Removed
4

« Some techniques for optimization

— Pruned edges with less impact

— Reduce the solution space by
clustering users
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4 4 Performance Measure  Actual CTR

Edge CTR Matrix ﬁ
AD1 x Userl

AD2 x Userl

AD3 x Userl || 1 : Estimate parameters
2 :Optimize by D—-Wave

AD1 x User?2

AD2 x User2

—
P Time(Hour)
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4 Performance Measure Actual CTR
Edge CTR Matrix ﬁ

AD1 x Userl

AD2 x Userl 4

AD3 x User 1 :Estimate parameters
2 :Optimize by D—-Wave

AD1 x User?2

AD2 x User2

—
P Time(Hour)
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Experiments with Real World Data

7o

Quantum annealing(QA)

Performance

finds a better solution than ..

the greedy method x

O 015

— Almost same CTR level o

— Low variation of CTR
i Low volatility
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Budget pacing is important for display advertising
* Formulate the problem as QUBO

« Use D-Wave 2X to solve budget pacing control
optimization problem

* Quantum annealing finds a better solution than the
greedy method.
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Thank you for listening
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Budget pacing for targeted online advertisements at Linkedin
— D. Agarwal, S. Ghosh, K. Wei, and S. You
— Proceedings of the 20th ACM SIGKDD, 2014

2. Real time bid optimization with smooth budget delivery in online
advertising
— K.-C. Lee, A. Jalali, and A. Dasdan
— The Seventh International Workshop on Data Mining for Online Advertising, 2013.
3. Online allocation of display ads with smooth delivery

— A. Bhalgat, J. Feldman, and V. Mirrokni
— Proceedings of the 18th ACM SIGKDD, 2012.
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However
most
research
has been
theoretical

Traffic flow optimization using a quantum annealer
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that quantum ing and, in i quantum anneal-
the potential to outperform current classical optimization algorithms
he benchmarking of these devices has been controversial. Initially,

Florian Neukart*!, David Von Dollen!, Gabriele Compostella?, Christian Seidel?,  however. these were quickly shown to be not well suited to detect

Sheir Yarkoni®, and Bob Parney®

nchmarking shifted to carefully crafted synthetic problems designed
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Abstract

Quantum annealing algorithms belong to the class of meta-heuristic tools, applicable for

solving binary optimization problems. Hardware implementations of quantum annealing, such

as the quantum processing units (QPUs) produced by D-Wave Systems, have been subject to

multiple analyse

in research, with the aim of characterizing the technology’s usefulness for

optimization and sampling tasks. In this paper. we present a real-world application that uses

quantum technologies. Specifically, we show how to map certain parts of a real-world traffic

flow optimization problem to be suitable for quantum annealing. We show that time-critical

optimization tasks, such as continuous redistribution of position data for cars in dense road

networks, are suitable candidates for quantum computing. Due to the limited size and connectivity






Satellite
Coverage
Optimization

-

Summary: Group
satellite together in such
a way as to maximize
coverage.

Data: For any possible
grouping of satellites, a
coverage percentage

Goal: Assign each of N
satellites to k groups,
such that total mean
coverage is maximized

Satellites change position
and require constant re-
optimization

Brute force solving is
out of the question;
even trivial subsets of the
satellites form too many
combinations to check.

Quantum technology
offers a promise to
perform combinatorial
optimization much
faster, while yielding
better coverage
outcomes.



*  This problem can be
reformulated as a graph
problem, called the k-clique
problem

«  Each potential group of satellites
T h e in a sub-constellation can be
considered a node on a graph
. — Each node is given a weight
We I gh te d equal to the coverage provided
— If both sub-constellation use
. the same satellite, the nodes
are unconnected
k_C | I q u e — The goal is thus to find the k
nodes with the highest total
weight that are all mutually

problem gt re o

«  This problem can then be
expressed as a QUBO, and sent
to the quantum computer




DeSIgn | ng the Each (logical) qubit represents a potential grouping

QU BO of satellites

Connections represent a grouping that is non-

Constraints: overlapping (does not use the same satellite in
1. Choose only multiple groups)
nodes that are
H = 2(w; + w;
connected g (wi+w;)
2. Maximize the sum
of coverages for
H = — A WP i
each group Z e
chosen
3. Choose a number N2 ,
: H=W Ti — = 64W — Va; T;T
of qubits 6qual o 7 (Z ) 8) 6411 Z;SH 2 +;J r;

the number of
. . W is the qubit
avallable Satelhtes maximum weight



» This satellite optimization problem is a prime candidate for
a quantum approach when used in concert with classical

Qua ntum computln.g re.sources. |
« The application to satellites could be the first major
Hardware quantum success when applied to a real-world full-scale
is rapid| problem.
p y « However, with current numbers, we would still need 10”4-
matu 1 ng 1075 qubits to fully embed this problem

« Thus, we created a heterogeneous approach that combines
classical processing and quantum annealing

Qubit count for quantum annealers




Algorithm
techniques:
TWO

APPROACHES

Remove low coverage/Pick
random

Heterogeneous

Quantum Quantum

Computer

Post-processing

Computer

Post-processing

GA + ANNEAL PRUNE/RANDOM + ANNEAL




Heterogeneous

Computing
Models

Classical Heuristics

GA pre-processing

Prune and Anneal

Can provide fairly good
results. Can be run on
classical machine.

Searches full decision
space, produces solid
results

Very good results in
good time, most similar
to existing technique

Cannot be run on
current QA devices, no
quantum speed-up,
scaling uncertain

Middle of the road
performance and
speed, many
parameters to tune

Does not explore full
solution space,
requires domain
knowledge



Results
Comparison:
Quantum
Simulator

Percent Coverage

An 80% coverage(red) is the minimum acceptable average.

The eight colored bars represent individual sets, black bar (and dotted
line) is overall average

Quantum approach is faster and finds a significantly better results

Classical Optimization Repetition: 1 Pruned Quantum Optimization Repetition: 1

~
-
5 4tion

Purely Classical Genetic Simulated Quantum Prune
Algorithm and Anneal
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Fitness by Annealing Time
and Pre-Processing Method

80

Results
Comparison:
D_Wave ] =y

70
I

Fitness (%)

60

50

T T T T T
0 500 1000 1500 2000

Annealing time (seconds)

* Results are nearly constant with processing time

* Results are highly dependent on pre—processing method (color)
« 80% is minimal acceptable
*  90% is likely near the true maximum.



D-Wave time (seconds) vs. Total Time (seconds)

800
1

e D-Wave time makes up
most of the time, GA adds
a little more

600
1

Results
Comparison: 3
D_Wave 0 200 w0 600 B0

D-Wave time (seconds)

B prune
random
| genetic

Total Time (seconds)
400
1

200
1

Fitness by Time and D-Wave Method

 Including D-Wave’ s ; | ¢
“Virtual Full Yield” does o ;
not significantly change g - ¢
performance while 1
improving portability © o8

total time (seconds)



Summary

Prune + v Very Little 90%
Anneal

GA + X Some 80-85%
Anneal

Random + X Very Little 75-80%
Anneal

* The D-Wave functions best as a co—processor

* Performance is highly dependent on problem formulation, classical
processing step

* Quantum portion does appear to provide significant improvement.



Conclusions

As problems and datasets grow, modern
computing systems have had to scale with them.
Quantum computing offers a totally new and
potentially disruptive computing paradigm.

For problems like this satellite optimization
problem, heterogeneous quantum techniques
will be required to solve the problem at larger
scales.

Preliminary results on this problem using
heterogeneous classical/quantum solutions are
very promising.

Exploratory studies in this area have the
potential to break new ground as one of the
first applications of quantum computing to a real-
world problem
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