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1. Introduction

• What is Display Advertising?
– Advertisements appearing on websites

• Main purpose 

– Deliver general advertisements and 
brand messages
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Behind the Scenes
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Behind the Scenes
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Business Model

• Advertiser pays a publisher when the ad is clicked

• Performance Indicator

– Click Through Rate (CTR)

– Cost Per Impression (CPI)

– Cost Per Click (CPC)    ...etc
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CTR Prediction with Machine-Learning

• Machine-Learning (ML) tech is often used for CTR prediction

• ML has succeeded in this field
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Budget Pacing

• Budget pacing is also important

• Control of budget pacing helps 

advertisers to…

– Reach a wider range of audience

– Avoid a premature campaign 
stop / overspending
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Budget Pacing

• Two lines of strategies
– Bid modification
– Probabilistic throttling

• We propose a different way based on a bipartite 
graph and inspired by financial theory

• Our research strengthens existing research rather 
than replacing it
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Our Approach: Model and Formulation
• Display advertising is 

represented by the 
edge-weighted bipartite 
matching problem

• Edge weight = CTR
(in our research)
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Our Approach: Model and Formulation

• Control the variation 
rate of CTR

• Find a matching with

– High CTR

– Low variation of CTR
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Our Approach: Model and Formulation

• Objective Function as QUBO
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Maximize CTR Low variation Constraint
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Experiments with Real World Data

• Setup

– Data: our Display Ad campaign data

– Combination: 14-advertisement campaign  and 24 user 
(cluster)

– CTR and its variation are estimated by historical data
• Sample average and variance-covariance matrix
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Experiments with Real World Data

• Use quantum annealing 
processor, D-Wave 2X 

• Some techniques for optimization

– Pruned edges with less impact

– Reduce the solution space by 
clustering users
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Experiments with Real World Data

• Correlation between edges (CTR correlation)
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Performance Measure
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…
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Experiments with Real World Data
• Hourly performance of each strategy
• Greedy method: Choose maximum CTR edge for each user
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Experiments with Real World Data

• Quantum annealing(QA) 
finds a better solution than 
the greedy method

– Almost same CTR level

– Low variation of CTR
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4. Summary

• Budget pacing is important for display advertising
• Formulate the problem as QUBO
• Use D-Wave 2X to solve budget pacing control 

optimization problem
• Quantum annealing finds a better solution than the 

greedy method.
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Thank you for listening
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Memo
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Satellite Coverage
Quantum Optimization



Satellite 
Coverage 

Optimization

Summary: Group 
satellite together in such 
a way as to maximize 
coverage.

Data: For any possible 
grouping of satellites, a 
coverage percentage

Goal: Assign each of N 
satellites to k groups, 
such that total mean 
coverage is maximized

• Satellites change position 
and require constant re-
optimization

• Brute force solving is 
out of the question; 
even trivial subsets of the 
satellites form too many 
combinations to check.

• Quantum technology 
offers a promise to 
perform combinatorial 
optimization much 
faster, while yielding 
better coverage 
outcomes.



The 
weighted 
k-clique 
problem

• This problem can be 
reformulated as a graph 
problem, called the k-clique 
problem

• Each potential group of satellites 
in a sub-constellation can be 
considered a node on a graph

– Each node is given a weight 
equal to the coverage provided

– If both sub-constellation use 
the same satellite, the nodes 
are unconnected

– The goal is thus to find the k 
nodes with the highest total 
weight that are all mutually 
connected (a "clique")

• This problem can then be 
expressed as a QUBO, and sent 
to the quantum computer



Designing the 
QUBO

Constraints:
1. Choose only 

nodes that are 
connected

2. Maximize the sum 
of coverages for 
each group 
chosen

3. Choose a number 
of qubits equal to 
the number of 
available satellites

Each (logical) qubit represents a potential grouping 
of satellites
Connections represent a grouping that is non-
overlapping (does not use the same satellite in 
multiple groups)

W is the qubit 

maximum weight



Quantum 
Hardware
is rapidly 
maturing

• This satellite optimization problem is a prime candidate for 
a quantum approach when used in concert with classical 
computing resources.

• The application to satellites could be the first major 
quantum success when applied to a real-world full-scale 
problem. 

• However, with current numbers, we would still need 10^4-
10^5 qubits to fully embed this problem

• Thus, we created a heterogeneous approach that combines 
classical processing and quantum annealing
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Heterogeneous 
techniques:

TWO 
APPROACHES

Genetic 
Algorithm

All sub-
constellations

SC SCSCSC

Quantum 
Computer

Post-processing

Remove low coverage/Pick 
random

All sub-
constellations

Quantum 
Computer

Post-processing

GA + ANNEAL PRUNE/RANDOM + ANNEAL



Heterogeneous 
Computing 

Models

Method Pros Cons

Classical Heuristics Can provide fairly good 
results. Can be run on
classical machine.

Cannot be run on 
current QA devices, no 
quantum speed-up, 
scaling uncertain

GA pre-processing Searches full decision 
space, produces solid 
results

Middle of the road 
performance and 
speed, many 
parameters to tune

Prune and Anneal Very good results in 
good time, most similar 
to existing technique

Does not explore full 
solution space, 
requires domain 
knowledge



Results 
Comparison:

Quantum 
Simulator

Purely Classical Genetic 

Algorithm

Simulated Quantum Prune 

and Anneal

• An 80% coverage(red) is the minimum acceptable average.

• The eight colored bars represent individual sets, black bar (and dotted 

line) is overall average

• Quantum approach is faster and finds a significantly better results



Results 
Comparison:

D-Wave

• Results are nearly constant with processing time

• Results are highly dependent on pre-processing method (color)

• 80% is minimal acceptable

• 90% is likely near the true maximum.



Results 
Comparison:

D-Wave

• D-Wave time makes up 

most of the time, GA adds 

a little more

• Including D-Wave’s 

“Virtual Full Yield” does 

not significantly change 

performance while 

improving portability



Summary
Method Uses

Domain-
Knowledg
e

Time 
Needed

Performance

Prune + 
Anneal

ü Very Little 90%

GA + 
Anneal

X Some 80-85%

Random + 
Anneal

X Very Little 75-80%

• The D-Wave functions best as a co-processor

• Performance is highly dependent on problem formulation, classical 

processing step

• Quantum portion does appear to provide significant improvement.



Conclusions

• As problems and datasets grow, modern 
computing systems have had to scale with them. 
Quantum computing offers a totally new and 
potentially disruptive computing paradigm.

• For problems like this satellite optimization 
problem, heterogeneous quantum techniques 
will be required to solve the problem at larger 
scales.

• Preliminary results on this problem using 
heterogeneous classical/quantum solutions are 
very promising. 

• Exploratory studies in this area have the 
potential to break new ground as one of the 
first applications of quantum computing to a real-
world problem
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Thank You
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