D::\WJaAURE

The Quantum Computing Company™

Partitioning Optimization Problems for
Hybrid Classical/Quantum Execution

Michael Booth, Steven P. Reinhardt, and Aidan Roy

2017-01-09

Overview

We introduce gbsolv, a tool that solves large quadratic unconstrained
binary optimization (QUBO) problems by partitioning into subprob-
lems targeted for execution on a D-Wave system. Using a classical
subproblem solver rather than quantum annealing, gbsolv delivers
state-of-the-art numerical results and executes almost twice as fast as
the best previously known implementation. We have released gbsolv
as open-source software to foster greater use and experimentation in
such partitioning solvers and to establish the QUBO form as a target
for higher-level optimization interfaces.

14-1006A-A
D-Wave Technical Report Series

CONTACT

Corporate Headquarters
3033 Beta Ave

Burnaby, BC V5G 4M9
Canada

Tel. 604-630-1428

US Office
2650 E Bayshore Rd
Palo Alto, CA 94303

Email: info@dwavesys.com

www.dwavesys.com

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

Notice and Disclaimer

D-Wave Systems Inc. (“D-Wave”) reserves its intellectual property rights in and to this document, any
documents referenced herein, and its proprietary technology, including copyright, trademark rights,
industrial design rights, and patent rights. D-Wave trademarks used herein include D-WAVE®,
D-WAVE 2X™, D-WAVE 2000Q™, and the D-Wave logo (the “D-Wave Marks”). Other marks used
in this document are the property of their respective owners. D-Wave does not grant any license,
assignment, or other grant of interest in or to the copyright of this document or any referenced docu-
ments, the D-Wave Marks, any other marks used in this document, or any other intellectual property
rights used or referred to herein, except as D-Wave may expressly provide in a written agreement.

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

Summary

Quantum annealing systems implemented by D-Wave Systems offer a very different com-
puting substrate from classical computers, which requires new programming tools to en-
able widespread use. The quadratic unconstrained binary optimization (QUBO) problem
serves as a useful intermediate problem representation, as it closely matches the hardware
format and many real-world problems can be easily mapped to it. However, QUBO in-
stances arising from real-world problems do not necessarily match the constrained size and
connectivity of a given system. We describe a solver, qbsolv, that reads a QUBO instance
in a general format, partitions it into subQUBOs, solves the subQUBOs, and combines the
results to form a solution to the original instance. Individual subQUBOs may be solved via
a D-Wave system or a classical tabu search solver. Using the classical subQUBO solver, our
solver finds competitive solutions almost twice as quickly as the best known alternatives.
Solving the subQUBOs on a D-Wave system, our solver finds competitive solutions though
with no speed advantage. These results demonstrate that large QUBOs can be effectively
solved by a solver using quantum annealing hardware of limited size and connectivity. We
expect this proof of concept to spark further work both in such solvers and in tools and
techniques to map real-world problems to the QUBO format.

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

Contents

1

2

Introduction

The Quadratic Unconstrained Binary
Optimization Problem

Algorithm and Implementation
Performance

Discussion

Open-Source: Use and Collaboration
Conclusion

Acknowledgements

QUBO Input File Format

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

1 Introduction

Quantum annealing (QA) systems such as those developed by D-Wave Systems will pro-
vide one path beyond the anticipated end of Moore’s Law performance improvements
for classical computers. However, the programming model implemented by QA is very
different from that of the classical von Neumann architecture and requires a much closer
mapping of problem to computer (at this stage of QA development). This difference re-
quires application developers to map to new problem formulations, and they require that
the time spent on such fundamental rethinking be amortized over multiple machine gen-
erations. Thus, generality of programming abstractions is essential.

The quadratic unconstrained binary optimization problem, or QUBO [1], is a close match
to the native (Ising model) machine instruction of D-Wave systems. Many problems have
been shown to map to the QUBO form [2, 3], so it is an attractive intermediate representa-
tion. However, in order to be solved directly on a D-Wave platform, a given input instance
in general QUBO form must be partitioned and mapped to a restricted format known as the
Chimera graph [4]. The work of Glover et al. [5] and extensions in Wang et al. [6, 7] show
that decomposing large QUBO instances into subQUBOs and combining the sub-solutions
can be an efficient and effective solution approach. This work describes a new algorithm
motivated by Glover’s algorithm, with the subQUBO size selected to fit on a given D-Wave
system, for eventual quantum acceleration. With the current implementation the user may
select to execute subQUBOs either on a D-Wave system or on gbsolv’s internal classical
tabu search solver. Both choices deliver solutions that are competitive with the best pub-
lished results. Further, purely classical execution delivers execution speeds that are almost
twice as fast as the best published results.

While these results are encouraging, we view them more as validating the approach of
creating a general QUBO solver suitable for a variety of problem types rather than this
particular implementation. Independent of the exact algorithm used, large-neighborhood
(subQUBO) updates can improve the performance of local search algorithms, and solving
the subQUBOs is achievable with current QA hardware. As expressed by Booth et al. [8],
the availability of general QUBO solvers (especially those accelerated by quantum com-
puters) may spur the development of higher-level tools and methods that target the QUBO
form as a preferred intermediate representation.

2 The Quadratic Unconstrained Binary
Optimization Problem

The QUBO problem is defined, for Q an n x n upper-triangular matrix of real weights and
x a vector of n binary variables, as minimizing the function

f(x) =) Quxi +) Qixix;
i i<j
or, more concisely,

min xTQx.
xe{0,1}"

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

With trivial transformations, the QUBO form is equivalent to the unconstrained binary
quadratic program (UBQP) [5], Ising model [9], and undirected graphical model [10] forms.

3 Algorithm and Implementation

The hybrid classical/quantum algorithm described in this work uses a two-level approach
— the first level being the full problem QUBO instance and the second level being the sub-
QUBO sized to fit on the underlying D-Wave system. The algorithm iterates through trials,
with each trial consisting of a set of calls to a subQUBO solver (ideally the D-Wave system)
for global minimization and a call to tabu search for local minimization. (For ease of appli-
cation development without access to a quantum system, the subQUBO may be executed
either on a D-Wave system or on an internal classical solver. We refer to this as “subQUBO
execution”.) The hybrid nature of the algorithm exploits the complementary strengths of
the D-Wave solver and tabu search: the D-Wave quantum-annealing system is very good
at exploring diverse regions of the state space but its limited precision constrains its ability
to get to an exact minimum quickly [13, 14]. By contrast, the tabu search can quickly find
an exact minimum within a neighborhood but sometimes struggles to escape from that
neighborhood. Alternatively, the algorithm can be viewed as a large-neighborhood local
search [15], with tabu improvements after every iteration. Similar approaches were stud-
ied by Rosenberg et al. [16] and Albash et al. [17], with many suggested variations and
refinements.

The algorithm itself is documented in Algorithm 1. The key data structure maintained is
the index vector, which orders the variables by decreasing impact on the value of the solu-
tion. The impact of a variable is the increase in objective-function value (i.e., less optimal)
that occurs when the variable is negated in the current solution. (Assuming the current
solution is a local minimum, the value will not decrease.) We expect variables of larger
impact to be more strongly determined.

After finding an initial value (Vbest), solution (Qbest), and index (lines 8-10), the main
loop (lines 13-33) repeats the two phases of the computation. The first phase splits the input
QUBO instance into subQUBOs that fit on a given system (currently about 45 variables on
a 1000-qubit D-Wave 2X system) that are then executed. The fraction constant denotes the
fraction of the QUBO instance that is partitioned into subQUBOs; it is typically in a range
between 0.05 and 0.15. Each subQUBQO's variables are contiguous in the index vector,
partly as a vestige of Glover’s algorithm and partly to solve portions of the problem whose
variables have roughly equal impact on the solution. To optimize over a set of variables S,
we clamp the variables outside of S. That is, we consider the QUBO instance on variables
S that results from fixing the variables not in S to their values in the current best solution.
More precisely, if the current solution is x*, then the new subQUBO on S is

fs(xs) = Y (Qii +di)xi + Y, Qijxix;
i€s ijes
i<j
where d; is the contribution to the linear term in x; provided by the variables that are
clamped:
di =) (Qij+Qji)x}.

j#$

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

Algorithm 1 Partitioning algorithm implemented by gbsolv

I e T e S e G e Gy

17:

33:
34:

© N U W N e

: Input: QUBO instance
: # Vbest is the lowest value found to date
: # Qbest is the solution bit vector corresponding to the lowest value so far

index is the indices of the bits in the solution, sorted from
most to least impact on value

: # Get initial estimate of minimum value and backbone
: Qtmp < random 0/1 vector

: (Vbest, Qbest) «— TabuSearch(QUBO, Qtmp)

: index <— OrderByImpact(QUBO, Qbest)

: passCount < 0

: Qtmp < Qbest

: while passCount < numRepeats do

fori = 0;i < fraction x Size(QUBO); i += subQuboSize do
select subQubo with other variables clamped
subQubo < Clamp(QUBO, Qtmp, index|[i : i+subQuboSize—1])
(subV, subQ) <— DWaveSearch(subQubo)
project onto full solution
Qtmp[index[i : i+subQuboSize—1]] + subQ

end for

(V,Qnew) «— TabuSearch(QUBO, Qtmp)

index < OrderByImpact(QUBO, Qnew)

if V < Vbest then
Vbest < V;Qbest < Qnew
passCount + 0

else if V == Vbest then
Qbest < Qnew
passCount + +

else
passCount + +

end if

Qtmp < Qnew

end while
Output: Vbest, Qbest

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

After the subQUBO is solved, the current solution is updated with the appropriate bits
from the subQUBO solution vector. The goal is that the new candidate solution, built from
the prior candidate solution and updates from the subQUBO results (line 19), will jump out
of a local minimum. This new Qtmp is then input to a tabu search that will find a new local
minimum. Every time a new best solution is found, the main loop’s passCount iteration
counter is reset (lines 23-25); the algorithm will make up to numRepeats passes to discover
a new best solution.

The D-Wave and tabu phases are complementary in numerical precision. D-Wave systems
have limited precision and are affected by integrated control error; for these and other rea-
sons (including the heuristic nature of QA), solutions to the subQUBOs returned may not
be global or even local optima. However, the classical portion of the algorithm, including
the main loop and the tabu search, is calculated with the same precision with which the
original QUBO format is specified: IEEE double-precision (64-bit) floating-point values.

The current method of mapping the logical subQUBO to the physical topology, via complete-
graph embedding, is inefficient in terms of the number of variables that can be embedded.
See Section 5 for a more detailed discussion of this effect.

In this description, we focus on the important concepts in the algorithm. In practice, an
optimized implementation of the classical portions of the algorithm is also important. We
omit many details of that optimization in the interests of clarity of exposition; e.g., the
variables that hold the expected change in objective-function value from flipping each bit
are not shown.

This algorithm builds on the concept from Glover’s algorithm [11] of strongly determined
variables, which are those that frequently receive particular values in the best solutions pre-
viously discovered. This is related to the backbone concept from the constraint-satisfaction
world, which denotes the set of variables that are fixed in all satisfying solutions. The algo-
rithm tries to identify strongly determined variables constructively, because the analogous
set of optimal assignments is not known in advance. The algorithm executes a number of
trials, each consisting of a phase of tabu search and a phase of fixing or freeing selected
variables, selecting a successively smaller subQUBO of the most impactful variables, solv-
ing a coarsened problem, and projecting those results into the next larger problem. (See also
[12] for related work.)

4 Performance

To measure the performance of this new algorithm, we have focused on the UBQPs col-
lected by Beasley and residing in the ORlib repository [18, 19]. (A UBQP instance can be
trivially transformed to a QUBO instance.) These problems range in size up to 2500 vari-
ables with significant density; we focus on the ten 2500-variable problems. The results
from Wang et al. [6] are the best results previously published. Wang et al. obtained their
results on a PC running Windows XP with a Pentium 2.83 GHz CPU and 8 GB RAM. The
gbsolv results below were obtained executing on a single core of a MacBook Pro with an
Intel Core™ i7 2.3 GHz CPU and 16 GB RAM.

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

gbsolv gbsolv

Best Time Best bsolv non- non- gbsolv gbsolv
Instance value £ gbsolv fl . target target
from [6] rom [6] value 7o gain ta.rget target time speed-u
P p
time speed-up
1 1,515,944 11 1,515,944 0.0000 19.1 0.6 4.7 2.3
2 1,471,392 101 1,471,392 0.0000 21.2 4.8 7.1 14.3
3 1,414,192 49 1,414,192 0.0000 252 1.9 10.9 4.5
4 1,507,701 6 1,507,701 0.0000 13.5 0.4 2.2 2.8
5 1,491,816 14 1,491,816 0.0000 27.0 0.5 15.3 0.9
6 1,469,162 25 1,469,162 0.0000 33.0 08 225 1.1
7 1,479,040 48 1,479,040 0.0000 17.2 2.8 1.2 38.5
8 1,484,199 20 1,484,199 0.0000 225 0.9 11.0 1.8
9 1,482,413 51 1,482,413 0.0000 14.3 3.6 0.9 57.8
10 1,483,355 55 1,482,870 -0.0003 19.2 29 354 1.6
Total 380 212.2 111.2

Table 1: Comparison between Wang et al. [6] and gbsolv results and timings for the ten 2500-
variable problems from the Beasley ORlib repository. These results are achieved solely with classical
execution, i.e., no contribution from the D-Wave quantum system.

Table 1 compares the results from Wang et al. to the results produced by gbsolv. The
columns contain the instance number, the best previous value of the objective function
(which [6] finds for all instances), the time for the PR1 algorithm from [6] (since PR1 is on
average faster than PR2) in seconds, the best qbsolv value of the objective function in non-
target mode (see below), the gain (or loss, if negative) in value compared to [6], the time in
seconds for gbsolv in non-target mode, the non-target-mode speed-up of gbsolv over PR1,
the time in seconds for gbsolv in target mode, and the target-mode speed-up of gbsolv
over PR1. The gbsolv timings reported in Table 1 include the time spent partitioning the
problem into subQUBOs and the time spent solving those subQUBOs. In these results
all subQUBO-solution time is spent executing purely classically by gbsolv’s built-in tabu
solver. To simplify comparison of successive results, gbsolv was run with a fixed random
seed for each execution, yielding deterministic results when executed classically. Thus the
timings shown are for a single execution for each instance.

By default, the gqbsolv algorithm continues looking for a better answer after it achieves a
new best-to-date value of the objective function. The “non-target” times here include this
time spent after the final answer is found. When the user knows the best possible value
(analytically or by construction), qbsolv’s target option allows that value to be specified,
causing execution to halt when that best answer is found and saving any time that would
otherwise be spent looking for a better answer. Both non-target and target times are re-
ported in Table 1, as it is not clear that Wang et al.’s algorithm can also save that time.
(Instance 10 is solved faster in non-target mode because gbsolv’s stopping heuristic mis-
takenly believes it has found the minimum when it has not; target mode continues until it
has found the minimum.)

The gbsolv numerical results are nearly the same as the best from the previous literature,
though consuming 56% of the total wall-clock time for the non-target case and 29% of the
wall-clock time for the target case.

Rosenberg et al. [16] report objective-function values and execution time for their partition-

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

ing solver, also intended to solve subQUBOs on quantum annealing hardware when that
execution delivers a performance advantage. That work also reports objective-function val-
ues and execution time, with the number of executed system-sized subQUBOs measured
and wall-clock time calculated. That algorithm is implemented in Python while gbsolv is
implemented in optimized C. With this implementation difference besides the calculated
D-Wave execution time, it is not clear that the Rosenberg timings, which are roughly an
order of magnitude slower than the gbsolv timings reported here (1731 seconds for all 10
Beasley 2500-variable problems total compared to 212 seconds), indicate anything about
the relative merits of the two algorithms.

5 Discussion

A partitioning solver accepting a standard form of a widely relevant intermediate repre-
sentation appears to be a useful implementation target for higher-level tools. The potential
usefulness of gbsolv as a back end in such a tool stack has been demonstrated via a proto-
type constraint-satisfaction tool, which generates the QUBO format described in Appendix
A and solves it via gbsolv. Connections to widely used optimization interfaces such as the
General Algebraic Modeling System (GAMS) [20] or AMPL [21] appear attractive.

This algorithm can reasonably be applied to very large optimization problems. The largest
problem we have attempted to solve with gbsolv is map-coloring the 3108 continental
US counties, with a color-encoding that creates a QUBO instance of 12,432 variables. The
gbsolv algorithm solves that problem in 202 seconds using the target option.

At many junctures, we chose one of a set of plausible approaches for implementation; many
not-chosen approaches may yield better results than the current implementation. Some of
the most important topics we see for experimentation are:

e Methods for embedding subQUBOs. The inner loop of the algorithm, which ex-
tracts subQUBOs and executes them, will often execute a subQUBO that has not
executed previously. A mandatory step in executing such a subQUBO instance on
a D-Wave system is mapping the variables and pairwise interactions of the logi-
cal problem to physical qubits and couplers. For real-world problems, this is often
done via a heuristic embedding approach [22], but that can be unacceptably slow
for gbsolv’s needs. Instead, at initialization time the algorithm embeds a complete
graph of the maximum size supported by the targeted system, re-using that same
embedding for each call to DWaveSearch. The simple mapping of subQUBO vari-
ables and influences to clique chains is very fast but resource-inefficient in that early
anecdotal evidence is that many subQUBOs will be much more sparsely connected
than a complete graph. Improved embedding schemes will enable the algorithm to
use a bigger subQUBO size and also improve the performance of the D-Wave system.
As discussed by Albash et al. [17] and Rosenberg et al. [16], the emergence of fast,
resource-efficient techniques for mapping subproblems to QA hardware is essential
for the success of an iterative solver.

* Methods for partitioning the input QUBO instance. gqbsolv uses a backbone-based
method inspired by Glover et al. [7], which may result in getting stuck at a local
minima despite the use of large-neighborhood moves. Other partitioning strategies

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

may yield better results.

6 Open-Source: Use and Collaboration

With our primary goals being to enable application use of D-Wave systems and find bet-
ter partitioning solvers that support acceleration via quantum annealers, we chose to re-
lease gbsolv via an open-source license to promote its use, serve as a viable, sustainable
code base that will foster such further work, and enable ready comparisons between dif-
ferent algorithms implemented within it. The gbsolv project resides at http://github.
com/dwavesystems/qbsolv. Besides the code itself, there is a man page and an example.
Questions or problems may be communicated via the Github site.

The source code may be built and executed purely classically via the built-in tabu solver on
OS X and Linux systems. Users wishing to execute on a quantum-processing unit (QPU) (or
simulated) D-Wave system will require additional software; contact the authors or D-Wave
for details.

We welcome collaborators wanting to experiment with better versions of the gbsolv algo-
rithms. We will administer the project balancing the two goals of fostering diverse experi-
mentation and delivering usable, robust software.

7 Conclusion

In this paper, we describe a new implementation of a large-neighborhood local search al-
gorithm that combines tabu search with partitioning a large QUBO instance into pieces
that fit on current quantum annealing systems. We show that the performance of gbsolv,
without acceleration from quantum annealing, is competitive in numerical results and su-
perior in wall-clock performance compared with other QUBO solvers. The input QUBO
instance is expressed in a file format derived from the DIMACS CNF format [23], which
could be used as a common format by all tools writing and reading QUBO instances. We
offer gbsolv as a proof of the concept of a large-QUBO solver that executes subQUBOs
using quantum annealing, expecting that improved algorithms will likely arise. With the
emergence of robust large-QUBO solvers, application developers and upper-level tools can
map problems of arbitrary size and connectivity to the QUBO form and be confident there
will be effective means of solution.

3 Acknowledgements

Our D-Wave colleagues Mark Furtney and Denny Dahl helped develop the tools architec-
ture in which an arbitrary QUBO abstraction and gbsolv play essential roles. Mark Furt-
ney implemented the initial shell of the gbsolv program and the prototype tool for solving
constraint-satisfaction problems. Fred Glover and Mark Lewis improved the comparison
in Section 3 between the algorithm in [7] and this algorithm.

Copyright © D-Wave Systems Inc.

http://github.com/dwavesystems/qbsolv
http://github.com/dwavesystems/qbsolv

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution

A

0 ~N O O WwN -

QUBO Input File Format

The input file format is modeled on the DIMACS Satisfiability File Format [23]. QUBO
files, typically named with a .qubo file extension, are ASCII, line-based, and may contain
four types of lines:

”

¢ Comments: denoted by a “c” in the first column.

7"

* Program: denoted by a ”"p” in the first column, the single program line per file

must be the first non-comment line in the file, and must contain the following space-
separated fields in the following order:

— p: the problem-line sentinel

qubo: file type; qubo is the only value currently supported

target: topology; currently supported values include 0 or unconstrained

maxDiagonals: the number of diagonal elements in the problem

nDiagonals: the number of nonzero diagonal elements in the problem

— nElements: the number of nonzero off-diagonal elements in the problem

Diagonal: the Q;; from Section 2. lL.e., a triple consisting of the variable number in
both the first and second positions and the variable’s weight, which can be any in-
teger or float value, in the third position. Variable numbers, for both Diagonal and
Element lines, must be between 0 and maxDiagonals-1 inclusive.

Element: the Q;; from Section 2. Le., a triple consisting of the distinct variable num-
bers of the two variables the element connects in the first and second positions and
the connection’s strength, which can be any integer or float value (excluding zero), in
the third position.

The number of Diagonal lines must equal the nDiagonal value in the program line and
the number of Element lines must equal the nElements value. While conventionally all
Diagonal lines appear before any Element lines, Diagonal and Element lines may be freely
intermixed in the file.

Listing 1: Example QUBO File

NP, OO R, OO0 WNFHOO'™ O

start with a comment

qubo 0 4 4 6
diagonals follow

3.4

elements follow
1.2.2
2 -3.4
2 4.5
any comment you want
3 -3.2
3 4.5678
31

Copyright © D-Wave Systems Inc.

Partitioning Optimization Problems for Hybrid Classical/Quantum Execution 9

References

[1] D. Wang and R. Kleinberg, “Analyzing quadratic unconstrained binary optimization problems via multicommodity flows,” Discrete
Applied Mathematics, vol. 157, no. 18, pp. 3746-3753, 2009.

[2] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lii, H. Wang, and Y. Wang, “The unconstrained binary quadratic programming
problem: A survey,” Journal of Combinatorial Optimization, vol. 28, no. 1, pp. 58-81, 2014.

[3] A.Lucas, “Ising formulations of many NP problems,” ArXiv preprint arXiv:1302.5843, 2013.

[4] P.I Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, et al., “Architectural considerations in the design of a super-
conducting quantum annealing processor,” Applied Superconductivity, IEEE Transactions on, vol. 24, no. 4, pp. 1-10, 2014.

[5] F. Glover, Z. Lii, and]J.-K. Hao, “Diversification-driven tabu search for unconstrained binary quadratic problems,” 40R, vol. 8, no. 3,
pp- 239-253, 2010.

[6] Y. Wang, Z. Lii, F. Glover, and J.-K. Hao, “Path relinking for unconstrained binary quadratic programming,” European Journal of Opera-
tional Research, vol. 223, no. 3, pp. 595-604, 2012.

[7] ——, “A multilevel algorithm for large unconstrained binary quadratic optimization,” in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, Springer, 2012, pp. 395-408.

[8] M. Booth, D. Dahl, M. Furtney, and S. P. Reinhardt, “Abstractions considered helpful: A tools architecture for adiabatic quantum com-
puters,” IEEE High Performance Extreme Computing, 2016.

[9] C.C. McGeoch, “Adiabatic quantum computation and quantum annealing: Theory and practice,” Synthesis Lectures on Quantum Com-
puting, vol. 5, no. 2, pp. 1-93, 2014.

[10] D. Madigan, J. York, and D. Allard, “Bayesian graphical models for discrete data,” International Statistical Review/Revue Internationale de
Statistique, pp. 215-232, 1995.

[11] E Glover, “Heuristics for integer programming using surrogate constraints,” Decision Sciences, vol. 8, no. 1, pp. 156-166, 1977.

[12] ——, “Adaptive memory projection methods for integer programming,” in Metaheuristic Optimization Via Memory and Evolution, Kluwer
Academic Publishers, 2005, pp. 425-440.

[13] J. King, S. Yarkoni, M. Nevisi, J. Hilton, and C. C. McGeoch, “Benchmarking a quantum annealing processor with the time-to-target
metric,” 2015, http:/ /arxiv.org/abs/1508.05087.

[14] A.Douglass, A. D. King, and J. Raymond, “Constructing SAT filters with a quantum annealer,” in Theory and Applications of Satisfiability
Testing-SAT 2015, Springer, 2015, pp. 104-120.

[15] R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, “A survey of very large-scale neighborhood search techniques,” Discrete Applied
Mathematics, vol. 123, no. 1-3, pp. 75 -102, 2002, 1SSN: 0166-218X.

[16] G.Rosenberg, M. Vazifeh, B. Woods, and E. Haber, “Building an iterative heuristic solver for a quantum annealer,” CoRR, vol. abs/1507.07605,
2015.

[17] T. Albash, F. Spedalieri, I. Hen, K. Pudenz, and G. Tallant, “Solving large optimization problems with restricted quantum annealers,”
IEEE High Performance Extreme Computing, 2016.

[18] J.E. Beasley, “OR-Library: Distributing test problems by electronic mail,” Journal of the Operational Research Society, pp. 1069-1072, 1990.

[19] . E. Beasley, Or-library, unconstrained binary quadratic programming, http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bgpinfo.
html, Accessed: 2015-11-29.

[20] GAMS Development Corporation, General Algebraic Modeling System (GAMS), https://wuw.gams . com/, Accessed: 2016-12-10.
[21] R. Fourer, D. Gay, and B. Kernighan, AMPL: A Modeling Language for Large-Scale Optimization. Boyd & Fraser, 1993, vol. 117.

[22] Z.Bian, F. Chudak, R. Israel, B. Lackey, W. G. Macready, and A. Roy, “Discrete optimization using quantum annealing on sparse Ising
models,” Frontiers in Physics, vol. 2, p. 56, 2014.

[23] DIMACS, DIMACS challenge file formats, http://www.dis.uniromal.it/challenge9/format.shtml, Accessed: 2015-07-07.

Copyright © D-Wave Systems Inc.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
https://www.gams.com/
http://www.dis.uniroma1.it/challenge9/format.shtml

	Introduction
	The Quadratic Unconstrained Binary Optimization Problem
	Algorithm and Implementation
	Performance
	Discussion
	Open-Source: Use and Collaboration
	Conclusion
	Acknowledgements
	QUBO Input File Format

