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Abstract—Earth observation satellites (EOS) collect vital data
for various applications such as weather forecasting, disaster
management, environmental monitoring, etc. Maximizing the
value of this data requires designing optimal EOS missions
to capture targets with high business value or priority while
satisfying complex constraints such as storage capacity, energy
limits, weather, etc. However, traditional computing methods
often struggle with the complexity of optimizing EOS mission
schedules, leading to suboptimal target selection and reduced
data collection efficiency. To address this challenge, there is a
growing interest in leveraging quantum computing to enhance
the efficiency and accuracy of EOS mission planning. Quantum
computing provides the potential to explore vast solution spaces
and find optimal schedules for EOS missions, even when faced
with complex constraints and objectives.

In this paper, we demonstrate the potential of our quantum
algorithm to optimize EOS mission schedules and improve the
efficiency of multiple EOS in real-time. The aim is to maximize
the acquisition of high-priority targets with significant business
value within the constraints of limited resources. We evaluated
the performance of our quantum algorithm by comparing it with
two classical optimization algorithms: simulated annealing and
Gurobi optimizer. Our quantum algorithm outperformed the
Gurobi optimizer by 23.46% in selecting high-priority targets,
while satisfying all constraints. Although the simulated annealing
executed faster than the quantum algorithm, its accuracy in
providing high-value targets was poor in comparison. Moreover,
the Gurobi optimizer took 39.09% longer to execute on average
than our quantum algorithm. Additionally, the Gurobi optimizer
failed to satisfy all constraints for 32% of the data, whereas our
quantum algorithm successfully satisfied all constraints for all
the data, even with an increased data size.

Index Terms—Earth Observation Satellites (EOS), Quantum
Computing, Quantum Annealing, Simulated Annealing, Gurobi
Optimizer

I. INTRODUCTION

Earth observation satellites (EOS) are of immense use in un-
derstanding and proactively responding to various complex and
dynamic natural systems of earth including climatic changes
leading to natural disasters, oceanography, deforestation, forest
fires, seasonal changes in the earth’s environment due to
cosmic showers, the sun’s impact on terrestrial communica-
tions and a host of various other phenomena and influences.

Satellites can probe and provide data for remote and normally
inaccessible regions of the earth through other modes of
information gathering. Therefore, EOS is a critical techno-
logical tool for carrying out scientific research to enhance our
understanding of the planet’s diverse ecosystems, geology, and
atmosphere amongst various other aspects. Since there is a
constant need for such information and providing intelligent
insights based on the gathered data, there is a requirement for
improved data acquisition and optimization techniques.

There are increasingly complex data acquisition challenges
faced by EOS due to the limitations of data storage and
transmission on the satellites. Some of these are the following:

(a) Volume of Data: EOS generates large volumes of data
which is further increasing due to technological advance-
ments in satellites. This results in significant challenges
for data processing, storing and data transmission to
ground (also called as earth) stations.

(b) Limited Data Storage Capacity: Satellites need to be
compact in size since every gram of additional weight
results in a significant increase in the cost for launching
the satellite, the storage capacity is usually limited. Con-
sequently, as the data volume increases, data storage on
board the satellite becomes a challenge. This results in
the question of optimizing which data to retain and which
one to discard.

(c) Bandwidth Limitations: The transmission bandwidth
available for transmitting data from satellites to the
ground stations is limited due to the communication
channel constraints. This in turn implies that only certain
amounts of data can be transmitted at a given point in
time. This can result in delays in data transmission and
data can also be lost.

(d) Weather conditions: Since EOS are usually in low earth
orbits, they can be affected by weather conditions in-
cluding dynamically changing atmospheric conditions
and cloud cover. This critically impacts the quality and
quantity of data that can be received by ground stations.

(e) Trajectories and orbits: This is one of the most important
aspects of data acquisition using satellites. Some areas of



earth may be more difficult to observe or access due to

the satellite’s trajectory and orbit. There could be multiple

satellites with overlapping trajectories trying to gather

data of a particular spot. Priorities of data gathering can

become challenging due to such diverse conditions.
Therefore, it is important to address these data gathering
challenges so that efficiency and effectiveness of EOS is
enhanced. Exploring new technologies such as quantum com-
puting techniques may be one of the directions to take to
address these challenges.

Quantum computing is a form of computing that is based on
three fundamental quantum mechanics principles, namely su-
perposition, entanglement, and interference. This is a complete
paradigm shift from the conventional or classical computing
principles on which the current digital computers are based.
The idea for quantum computing was initially mooted by
Feynman [1], [2] when he discovered that simulating quan-
tum phenomena using classical computers became unwieldy
even for a small number of quantum systems. He therefore
suggested that a computational machine should be developed
which would use the principles of quantum mechanics. Such a
computer would naturally align to simulate quantum phenom-
ena. The concept of a universal quantum computing machine
was first proposed by David Deutsch in 1985 [3], where
he outlined five principles for the existence of a universal
quantum computer. These are the principles of superposition,
entanglement, interference, measurement, and reversibility.

Quantum computers moved out of the research mode into
actual design, development, and usage in real-life phenomena
in 1994, primarily due to the paper by Peter Shor [4], [5]
on factoring large integers into a pair of prime numbers.
Classical algorithms used for the same task are proven to be
exponentially slower in comparison to the Shor’s algorithm.
The importance of Shor’s algorithm lies in the fact that clas-
sical cryptography algorithms used for encryption of online
transactions that are carried out every day can, in principle,
be broken by Shor’s algorithm. The other important research
work that was instrumental in bringing out quantum computers
out of the physics research mode was Grover’s algorithm on
unsorted database search [6] [7]. Grover’s algorithm can search
an unsorted database of N entries in O(v/N) time, which is
exponentially faster than the classical algorithm which does
the search in O(V) time. In today’s era, quantum computers
have made significant progress in terms of their use in solving
problems in quantum machine learning, quantum simulation
and certain classes of optimization problems which are NP-
Hard. For optimization problems, in general, quantum anneal-
ing is used, which is a heuristic optimization algorithm used
in quantum mechanics to determine the global optimum (in
this case the global energy minimum) of quantum mechanical
systems which may be of combinatorial complexity [8].

Given the above background, we address the following
research questions in this paper:

1) How do we optimize the scheduling of Earth Observation
Satellite missions for maximizing the acquisition of high-
quality data while addressing the efficient allocation of
limited resources using a quantum optimization algo-
rithm?

2) How does the proposed quantum optimization algorithm
compare with the most effective classical optimization
algorithms?

The structure of the paper is as follows. In Section II,
we present the current literature that addresses the above
questions. Section III gives an overview and provides mathe-
matical details of the proposed quantum annealing algorithm.
In Section IV we explain the methodology and experimental
setup that is used to develop the three optimization algorithms
namely, simulated annealing, Gurobi optimizer and quantum
annealing. We also explain the various experiments that are
carried out using the algorithms. In Section V we present the
results of the various experiments carried out in Section IV
and discuss the results of our experiments. We conclude the
paper with some future directions in Section VI.

II. RELATED WORKS

In the first part of this section, we briefly summarize earlier
work done on earth observation satellites and data acquisition
challenges. An excellent summary of using EOS for gathering
relevant information and analysis through remote sensing is
given in the book by Cracknell. It provides details on using
satellites to gather data and evaluate it for getting information
about earth’s surface for weather forecasting, climatology,
applications to the geosphere such as geomagnetic radiation,
gathering and analyzing geological data for geothermal and
volcano studies and so on. The longest-running and most
important satellite program for earth observation is the Landsat
program [9]. Landsat 1 started the era of collecting data
through satellites. These data have been extremely useful in
mapping and monitoring ground resources and atmospheric
conditions for developing programs which benefit everyone on
earth. The work by Colwell [10] provides an analysis of how
modern remote sensing techniques can facilitate the inventory
and management of natural resources which are renewable,
such as timber, agricultural crops as well as nonrenewable
resources including minerals and fossil fuels.

In recent times, fusion data-driven algorithms which are
based on machine learning tools and techniques are being
used for problems on earth observation [11]. The fusion data
is obtained through various sources including EOS, various
types of sensors, processes and variables which have a high
degree of spatial and temporal resolutions. Given that remote
sensing involves data volumes from the multitude of in-orbit
satellites, analyzing the data using deep learning is being
considered in this paper [12]. Spectral data with high spatial
resolution, (which is the number of pixels per unit area) and
very high spectral dimensionality with thousands of bands are
being acquired. These lead to significant challenges in data
management, data interpretation and data analysis.

Quantum algorithms have been applied for satellite mission
planning and scheduling to be used for earth observation [13],
[14]. There is some work also being done on using Quantum
Machine Learning algorithms for processing data from multi-
spectral sources for earth observation [15]. Quantum Anneal-
ers have been used for image acquisition of EOS [16].



III. OVERVIEW OF THE QUANTUM ANNEALING
ALGORITHM

This section gives an overview of the quantum annealing
algorithm that we have developed and details the mathematical
formulation. We have proposed an improved algorithm for
scheduling Earth Observation Satellite (EOS) missions. This
is a challenging task as it involves optimizing a large input
set while satisfying numerous dynamics constraints in real-
time, making it an NP-hard problem [17] which is difficult to
solve using classical methods. So, the quantum algorithm is
developed to optimize the EOS schedule, which can satisfy
all the constraints while giving optimal and efficient results in
real-time.

Our quantum algorithm can simultaneously optimize the
schedules of multiple satellites. The satellites have unique
imaging targets that may overlap during their respective jour-
neys. Thus, we need to make sure that their schedules are
synchronized and there is no redundancy in their acquisitions.
Since the primary goal of the algorithm is to maximize the
acquisition of high-quality data while ensuring the efficient
allocation of limited resources, the algorithm considers the
following constraints:

« Storage capacity of the satellite.

o Downlink limits of ground stations.

o Energy available for capturing the targets.

o Optimally selecting line of sight targets while considering
the satellite’s required adjustment time.

« Weather conditions

. Weather conditions are a critical factor and are considered in
the objective function of our algorithm. The weather variable
for each target indicates the probability of successful target
acquisition in that weather. The algorithm tries to pick the
targets with maximum weather variable values. Maximum
weather variable signifies better climate conditions.

The following parameters are input to the algorithm. We
have considered three sets of parameters, namely, targets,
satellites, and ground stations:

(A) Targets

o Target IDs

« Priorities

o Sizes

o Energies required to acquire targets
(B) : Satellites

« Satellite IDs

o Storage limits

o Energy Limit
(C) Ground Stations

o Ground Station IDs

o Downlink Limit of Ground Stations
The amount of data that can be transmitted to a ground station
from a satellite in one orbit is limited due to the limited
interaction time window, and the downlink limit constraint
is essential for ensuring that the captured data is effectively
transmitted to the ground station without any data loss. The
energy constraint is crucial in ensuring that satellites operate

S1 - Satellite 1
$2 - Satellite 2
S3 - Satellite 3

Fig. 1. Three Earth Observing Satellites S1, S2, and S3 with their lines sight
(The cyan parts highlight the intersection in the orbits of two satellites)

within their allocated energy budgets and avoid potential
system failures that could lead to data loss.

Consider the example illustrated in Fig. [T| with three distinct
EOS with a black strip representing the path of each satellite.
The cyan part indicates the intersection of the paths of the
satellites. Our algorithm maximizes the overall outcome while
ensuring that each satellite selects targets that meet its con-
straints, thereby minimizing resource wastage. Therefore, the
same target should not be selected by two or more satellites.
The algorithm ensures that this constraint is satisfied, and each
satellite chooses targets that satisfy its individual constraints
thereby eliminating redundancy and increasing efficiency.

It is worth noting that the scheduling problem becomes
increasingly complex as we incorporate more parameters and
constraints. However, our algorithm is designed to inherently
address these complexities and ensure that the scheduling
process is efficient and effective.

Fig. (] illustrates the approach we use for scheduling the
acquisition of targets. Our approach involves segmenting the
satellite’s path into various quadrants based on the presence
of ground stations. The geographical area between two ground
stations in the path of a satellite is considered a quadrant. Each
quadrant has its ground station and unique targets.

To capture a target, a satellite must adjust its camera to
properly align with the upcoming target. The amount of time
required for this adjustment varies depending on the target.
This period is referred to as the adjustment time of a target.
To ensure successful capture and proper camera adjustment,
the satellite must complete capturing a target with enough
time remaining to adjust its camera before the next target
aligns with it. However, if another target appears in the
satellite’s path before a previous target has fully passed or
if two or more targets appear simultaneously, the satellite
can only capture one target completely. To address this issue,
we propose an algorithm that optimizes the utilization of the
satellite’s resources, reducing wasted time, energy, and storage
by preventing overlapping target captures. Specifically, our
algorithm ensures that when multiple overlapping target re-
quests are encountered, only one will be scheduled for capture,
minimizing the negative impact of overlapping captures. By
effectively managing the satellite’s scheduling, our algorithm
can improve the efficiency of target capture while reducing
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Fig. 2. Illustration of EOS operation

waste, making it a valuable tool for satellite operations.

The algorithm presented in this study is a valuable addition
to the field of earth observation as it addresses crucial chal-
lenges in scheduling data acquisition. By prioritizing shared
targets and considering resource constraints, the algorithm
facilitates the efficient acquisition of high-quality data. This
significantly enhances the effectiveness of earth observation
missions.

A. Mathematical details of the quantum annealing algorithm

As mentioned above, we propose a novel quantum optimiza-
tion approach for Earth Observation Satellite (EOS) schedule
optimization that considers all relevant constraints, including
weather constraints. The primary goal of our algorithm is to
maximize the acquisition of high-quality data while ensuring
the efficient allocation of limited resources in real time. In a
typical data acquisition, the resources being storage capacity
of the satellite, energy of the satellite and the time window
available for downlinking the acquired data to a ground station
can be considered as the downlinking limit of the ground
station.

1) Objective function: The objective function that we have
proposed is:

Zpﬂ?i : Maximize High Priority Target Selection
)]
Zwixi : Maximize Good Weather Target Selection
2
To optimize for the two objectives, namely priority and
weather, we must balance their importance by assigning rela-
tive weights to each.

Objective = a Zpixi + 3 Z W;T; 3)

« and [ are weighting parameters to give more bias on either
weather or priority according to needs to find a solution that
meets both objectives to the greatest extent possible.

GS - Ground Station
dl - Downlink

2) Constraints: The following constraints apply to the
problem:

(a) Total sizes of images: less or equal to the downlink limit
of ground stations.

(b) Total energies of images: Less than or equal to the energy
limit of a satellite.

(c) Total sizes of images: within the storage limit of the
satellite.

3) The QUBO problem: Quadratic Unconstrained Binary
Optimization (QUBO) is a mathematical framework for rep-
resenting optimization problems as a quadratic polynomial in
binary variables.

H= Z a;x; + Z bijxixj @)
i i<j
x; is a binary variable that takes values O or 1, and a; and
b;; are the coefficients that determine the cost or objective
function of the optimization problem [18]. The first and second
term in (@) represents linear cost and quadratic cost respec-
tively, which depends on the pairwise interactions between the
variables. As a linear optimization model that uses a grid by
binary parameters, it can be transformed into a QUBO, and fit
rather quickly to the quantum Ising model [19].

We use the one-dimensional Ising model to encode the
proposed optimization problem, which is mathematically rep-
resented below:

by

i=1,j=i+1

N
H(O’) :Zhi0i+ Jijaiaj (&)
i=1
Where, H is Hamiltonian of the system, h; is the linear
coefficient corresponding to qubit biases and J;; are the
quadratic coefficients corresponding to the coupling strengths.
The Adiabatic Theorem states that if a quantum system
is prepared in its ground state at the start of a slow and
continuous evolution, then it will remain in its ground state
throughout the evolution. This is a central concept in the field
of quantum optimization.



Quantum Annealing (QA) is a specific type of AQC (Adi-
abatic Quantum Computing) that uses a different approach to
solve optimization problems. In QA, the initial Hamiltonian is
chosen to be a simple one, and the final Hamiltonian encodes
the problem. The system is prepared in a superposition of all
possible states and is then evolved under the time-dependent
Hamiltonian that interpolates between the initial and final
Hamiltonians [19].

H(t) = (1— %)Ho + %
where Hj is the initial Hamiltonian, Hg is the QUBO Hamil-
tonian to be solved, T is the total annealing time, t is the
instantaneous annealing time.

The initial Hamiltonian is typically a simple Hamiltonian
such as the superposition of all possible states. The second
term represents the QUBO Hamiltonian, which encodes the
optimization problem to be solved.

The annealing parameter t varies from O to T, so that
the system starts in the ground state of the Hamiltonian and
evolves towards the ground state of the QUBO Hamiltonian
[19].

Hq (6)

IV. METHODOLOGY AND EXPERIMENTAL SET UP

In this section, we present the methodology and the exper-
imental setup for carrying out the computational experiments.
Apart from our quantum algorithm, we have considered two
classical algorithms for baselining our results and to address
the intricate optimization problem at hand. These algorithms
are:

o Simulated Annealing, which is a heuristic optimization
technique that employs a probabilistic search approach.

o The commercial optimization solver, Gurobi optimizer.

¢ Our Quantum algorithm which uses the quantum anneal-
ing approach as explained in Section 3 which enabled the
simultaneous evaluation of multiple potential solutions
using the algorithm.

A brief overview of the algorithms is given below:

A. Simulated Annealing

Simulated Annealing is a well-known heuristic optimization
technique that can be used to solve optimization problems. The
goal in this research is to find the optimal allocation of limited
resources to maximize the acquisition of high-quality data.
The simulated annealing approach involves iteratively search-
ing through the solution space and accepting new solutions
based on a probability distribution that gradually becomes
more selective. The search terminates when the temperature
parameter reaches a sufficiently low value or when a maximum
number of iterations has been reached, and the algorithm
returns the best solution found during the search. By applying
the simulated annealing approach to our problem, we can
effectively optimize the allocation of limited resources to
maximize the acquisition of high-quality data [20]. These steps
are shown in Fig. [3|

Initialise
Parameters

1

Set initial temperature
and cooling rate

i

Cost function

C(x)
i
New schedule ‘—‘
i
New cost function Decrease temperature
C'(x) slowly using cooling rate
C'(x) < C(x) C'(x) > C(x)
s = C'(x) = C(x)
¢ =00 According to metropolis rule
[ I

Il

Optimal Solution

Fig. 3. Flowchart depicting simulated annealing

Define Optimization
Problem

i

Binary Variables to
represent decision variables

i
Objective Function

i

Add Constraints using
decision variables

i

Gurobi
Optimizer

1

Optimal Solution

Fig. 4. Flowchart depicting optimization using Gurobi Optimizer

B. Gurobi Optimizer

In the Gurobi optimizer the approach involves the following
steps as shown in Fig.

o Defining the problem as an optimization problem with
constraints

« Formulating it as a mathematical optimization problem,

« Inputting it into the Gurobi optimizer, and letting it solve
the problem.

The Gurobi optimizer employs advanced optimization tech-
niques, such as linear programming, mixed-integer program-
ming, and quadratic programming, to find the optimal al-
location of limited resources to maximize the acquisition
of high-quality data while satisfying the constraints of the
problem. The solution obtained by the Gurobi optimizer can
be evaluated to verify that it satisfies the constraints of the
problem and achieves the desired optimization goal.
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Fig. 6. Block diagram depicting quantum algorithm and other techniques used for optimization

C. Quantum Computing

For our quantum computing algorithm, we have used the
D-Wave quantum computer. The approach involves:
o Mapping the optimization problem to a quantum anneal-
ing architecture
« Using quantum annealing to find the optimal allocation
of limited resources to maximize the acquisition of high-
quality data while satisfying the constraints of the prob-
lem.
Quantum annealing involves encoding the problem as a set
of binary variables and representing the problem as an Ising
model (Fig. [5), which can be mapped onto a quantum an-
nealing architecture. The quantum annealer then searches
for the ground state of the Ising model, which corresponds
to the optimal solution of the optimization problem [19].
For complex problems involving numerous variables and
constraints, quantum annealing has the potential to search
solution spaces more efficiently and effectively, in comparison

to the classical optimization methods. Nonetheless, it is crucial
to acknowledge that the performance of D-Wave quantum
computing heavily relies on the problem and the quantum an-
nealer’s size. As a result, additional research and development
are necessary to ascertain the practicality and effectiveness of
utilizing D-Wave quantum computing for Earth observatory
satellite data acquisition optimization.

In the realm of earth observation satellite missions, weather
conditions play a vital role in determining the success of the
mission [21]. However, the effect of cloud coverage uncer-
tainty on satellite operation has been largely overlooked in the
existing research on deterministic scheduling [22]. To address
this critical gap, we have integrated this key factor into our
algorithm (Fig. [6), with the aim of optimizing the scheduling
of satellite observations and enhancing their efficacy under
diverse weather conditions [23]. Our approach is founded on
extensive research and geared towards ensuring the optimal
performance of the earth observation satellite mission.



100 4 >
80
80 1
80 1
601 60
60 -
€ € =
S s S
8 8 g
40 1 1
40 q 40
20 207 209
3
0+ 0- 0
True False

True
Satisified all Constraints?(Simulated Annealing)

(a (b)

False True
satisified all Constraints?(Quantum)

Satisified all Constraints?(Gurobi Optimizer)

(©)

Fig. 7. Performance comparison of each technique on a dataset of 100 rows with each row having 20 targets.

1004 100

80

60

count

40

204

count
o
count

True
Satisified all Constraints?(Quantum)

False True
Satisified all Constraints?(Simulated Annealing)

() (W)

False True
Satisified all Constraints?(Gurobi Optimizer)

(©

Fig. 8. Performance comparison of each technique on a dataset of 100 rows with each row having 100 targets.

100 100 100 A
80 801
60 60 1
€ 5 €
5 5 5
8 g g
40 40
20 204
2
o0 o
True False True

False True
satisified all Constraints?(Quantum)

Satisified all Constraints?(Gurobi Optimizer)

(©)

Satisified all Constraints?(Simulated Annealing)
() (b)

Fig. 9. Performance comparison of each technique on a dataset of 100 rows with each row having 600 targets.

100 1 o0 100 -
80 1 80 1
60 - 60 -
€ £ €
< H H
g g g
404 40
201 201
ol o
True False
Satisified all Constraints?(Quantum)

False
Satisified all Constraints?(Gurobi Optimizer)

()

True

Satisified all Constraints?(Simulated Annealing)

(@ (b)

Fig. 10. Performance comparison of each technique on a dataset of 100 rows with each row having 1000 targets.



Execution time for 20 datasets
50000
40000
30000

20000

Execution Time

10000

0 20 40 60 80 100 120

Number of algorithm’s trial for different datasets

Execution Time (Quantum) Execution Time(Simulated Annealing)

Execution Time (Gurobi Optimizer)
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V. RESULTS AND DISCUSSION

The aim of this study was to evaluate the effectiveness
of three optimization techniques - our Quantum algorithm,
Simulated Annealing, and Gurobi optimization - in optimizing
different datasets. As outcomes, the algorithms provide the
following results:

1) Whether the algorithm satisfies all the constraints

2) A list of targets for the earth observation satellites to
capture,

3) Identifying overlap of targets from multiple satellites and
recommending the appropriate satellite for capturing the
images.

This result will show how efficient algorithms are in optimiz-
ing weather parameters and maximizing priorities.

Using the Intel(R) Core(TM) i5 - 5257U CPU @ 2.70GHz
system with 2 physical cores, 4 logical processors, and up to
4 threads, we were able to solve a maximum of approximately
12,000 targets in approximately 7 minutes for our Earth
observatory satellite scheduling problem. From 12,000 targets
we achieved:

Total priority: 267219

Execution time: 468856.63 ms

Total Variables: 12000

Total Constraints: 4586

Also, all the datasets below are solved using this CPU model.
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Fig. 13. Execution graph of each technique on a dataset of 100 rows with
each row having 600 targets.
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Fig. 14. Execution graph of each technique on a dataset of 100 rows with
each row having 1000 targets.

A. Constraints Satisfaction Model:

We have considered 100 different datasets of 20, 100, 600
and 1000 targets each and applied Quantum, Gurobi and
Simulated Annealing algorithms. These histograms represent
the number of datasets the particular algorithm satisfied con-
straints out of 100 datasets of different numbers of targets
while maximizing objective function.

Thus, we can conclude that our Quantum algorithm was the
most effective method for maximizing priorities, outperform-
ing both Gurobi optimizer and Simulated Annealing. Gurobi
Optimizer was the second-best option, followed by Simulated
Annealing. Furthermore, we observed that our Quantum al-
gorithm was able to meet the constraints for all three sets of
targets, while Simulated Annealing frequently failed to meet
the constraints. Gurobi was able to satisfy the constraints to a
moderate extent as is shown in Fig. [7} Fig. [10]

B. Execution Time Graph

In Fig. [T} Fig. [I4] we have presented the execution
time graphs. Our analysis revealed that simulated annealing
exhibited minimal execution time; however, its effectiveness
in satisfying constraints diminished with increased complexity
of the dataset, and it failed to produce optimal solutions.
On the other hand, the execution graph of Gurobi opti-
mizer was comparable to that of the quantum algorithm up
to a certain threshold complexity of targets. Beyond this
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Fig. 17. Priorities comparison graph of each technique on a dataset of 100
rows with each row having 600 targets.

threshold, quantum annealing outperformed Gurobi optimizer
by a considerable margin. These results indicate that while
simulated annealing may be efficient for simpler problems,
quantum optimization approaches may be better suited for
more complex real-world scenarios. Furthermore, the findings
suggest that Gurobi optimizer may be effective up to a certain
complexity limit, beyond which quantum optimization should
be considered for optimal solutions.

C. Priorities Comparison Graph

In Fig. [[3}Fig. [I8] we have presented the priorities com-
parison graphs. For datasets of 20 targets, Quantum algorithm
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Fig. 18. Priorities comparison graph of each technique on a dataset of 100
rows with each row having 1000 targets.
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and Gurobi optimizer give similar results as observed from the
overlapping curves. There is a very small gap of bandwidth
we see from the graphs. The separation of amplitudes of the
waves represents the difference in the corresponding output
priorities.

From the above graphs, we have demonstrated that in
the case of a satellite scheduling problem with increasing
complexity, a quantum algorithm does a much better task
in allocating the resources, for maximizing priorities as well
as optimizing weather parameters while satisfying all the
constraints.

D. Impact of Weather Constraints on Target Prioritization: An
Analysis

The graph presented in Fig. [I9) illustrates the relationship
between the number of targets and their respective priorities,
considering the impact of weather constraints. As anticipated,
our findings suggest that the incorporation of weather con-
straints in the system leads to a reduction in target priorities,
with a larger decrease observed as the number of targets is
decreased. Additionally, we observed that as the overall num-
ber of targets increased, the gap between the priorities with
and without weather constraints also increased. These results
provide valuable insights into the impact of weather-related
factors on target prioritization and highlight the importance of
considering such constraints in the optimization process for
earth observation satellite missions.



These findings suggest that quantum computing may offer
a more efficient and effective solution for solving constrained
quadratic models in Earth observatory satellite data acquisition
problems with a large number of targets. However, it is
important to note that further research is needed to determine
the generalizability of these findings to other datasets and
problems. Overall, these results provide promising evidence
for the potential of D-Wave quantum computing to address
complex and challenging optimization problems, particularly
those with large datasets and numerous constraints, which are
common in many real-world applications.

VI. CONCLUSIONS AND FUTURE WORKS

In this study, we have demonstrated the potential of a
quantum algorithm for optimizing Earth observation satellite
(EOS) mission schedules. Our algorithm aims to maximize
the acquisition of high-priority targets and high-quality data
while satisfying constraints such as limited resources, storage
capacity, energy limits, and weather conditions. The algorithm
provided a list of targets for EOS to capture, identified overlaps
of targets from multiple satellites, and recommended the
appropriate satellite to capture the targets. Furthermore, the
algorithm effectively captured the issue of targets orthogonal
to the satellite motion, ensuring that more than one of these
targets can be captured efficiently.

Our study involved a comparison of our quantum algo-
rithm’s performance with two classical optimization algo-
rithms, simulated annealing and Gurobi optimizer. The results
showed that our algorithm surpassed both of these algorithms
in terms of selecting high-priority targets while satisfying all
constraints. Moreover, our algorithm was also faster than the
Gurobi optimizer and managed to satisfy all constraints for
100% of the data, even when the data size was increased.

Future works include demonstrating the results of the study
and showing the potential of quantum computing in improving
the efficiency and accuracy of EOS mission planning. Further
research can be conducted to explore the application of our
quantum algorithm to other problems and to incorporate
additional constraints and objectives into the algorithm. In
addition, it would be interesting to investigate the feasibility
of implementing the algorithm in a real-world EOS mission
scenario and to evaluate the performance of the algorithm
under different weather and environmental conditions. Finally,
the potential of using hybrid classical-quantum algorithms for
EOS mission planning should be explored, as this may provide
further improvements in performance and efficiency.
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