

Particle Track Pattern Recognition via Content Addressable Memory and Adiabatic Quantum Optimization

Qubits North America 2019

Gregory Quiroz¹, Lauren Ice¹, Andrea Delgado^{2,3}, Travis Humble²

¹The Johns Hopkins University Applied Physics Laboratory ²Oak Ridge National Laboratory ³Texas A&M University

Motivation

Objective

Leverage quantum annealing for pattern recognition in high energy physics particle detection

Why is this problem hard?

• Pattern matching accuracy is *highly dependent* on noise, detector resolution, and the number of simultaneous particle tracks

Why quantum annealing?

- Quantum annealing potentially
 - Enables more accurate pattern matching
 - Enables access to a family low-energy solutions that could improve track reconstruction

From Pattern Matching to Track Reconstruction

Pattern matching discriminates between signals from possible track candidates (gray) and noise (red)

Track Reconstruction

Track reconstruction algorithms are run over possible track candidates

Pattern Matching

- Pattern matching allows the data to be pruned of noise and background signals *before* track reconstruction
 - Patterns from experimental data compared to known library
 - Library produced from experimental data or simulator
- Pattern matching can be implemented in hardware as a triggering system
 - Dependent on granularity, noise level, efficiencies
 - Especially important for high luminosity experiments like those using the High-Luminosity LHC

Track Reconstruction for HEP

Track reconstruction

- Process of determining the trajectory of a particle from detector signals
- Highly dependent on detector design
- Usually computationally expensive
- Complicated by random noise, detector inefficiencies, high detector resolution, and many simultaneous tracks

Tree Search

- Organizing library into tree structure of increasing resolution decreases time to search library
 - Avoids linear growth of computation with granularity
 - Noise and number of simultaneous tracks has *large impact* on algorithm

Content Addressable Memory

Traditional Memory

- Input is address location of the desired content
- Output is the content of the address

Content Addressable Memory (CAM)

- Input is content of the stored memory
- Output is the location of the desired content

Quantum CAM

Problem Design

Cast CAM problem as an adiabatic quantum optimization problem

Keys:
$$K = [k^{(1)}, k^{(2)}, ..., k^{(m)}]^T$$
 Values: $V = [v^{(1)}, v^{(2)}, ..., v^{(m)}]^T$

Hamiltonian Description

 $H(t,\theta) = A(t)H_X + B(t)H_\theta$

Hebbs Learning Rule

$$W = \begin{pmatrix} 0 & W_B \\ W_B^T & 0 \end{pmatrix} \qquad W_B = \frac{1}{n} K^T V$$

Maximum Classical Learning Capacity: $C(n) = \frac{n}{2}\log(n)$

$$H_X = -\sum_{i}^{n} \sigma_i^X$$
$$H_\theta = -\sum_{i,j}^{n} w_{ij} \sigma_i^Z \sigma_j^Z - \sum_{i}^{n} \theta_i v_i^{(0)} \sigma_i^Z$$

QCAM Binary Classification

Multi-label Classification

We cast the HEP pattern matching problem as a *binary classification* problem

We only care if the recalled pattern is in the library

Recalling patterns in the library

Metrics

$$F = prob(k_{state} = k_{library}) \qquad F = \max_{v \in v_{library}} \frac{1}{||v\rangle|^2} |\langle v|v_{state}\rangle|^2 \quad F = \frac{1}{||v\rangle|^2} |\langle v_{target}|v_{state}\rangle|^2$$

Adding Inefficiency

Inefficiency: Each cell involved in a pattern is associated with a probability of detection

Adding Inefficiency

Inefficiency: Each cell involved in a pattern is associated with a probability of detection

Adding False Detection Events

False Detections: Each cell not involved in a track pattern is associated with a probability of detection

Adding False Detection Events

False Detections: Each cell not involved in a track pattern is associated with a probability of detection

Reverse Annealing Results

Metrics

$$F = prob(k_{state} = k_{library}) \qquad F = \max_{v \in v_{library}} \frac{1}{||v\rangle|^2} |\langle v|v_{state}\rangle|^2 \quad F = \frac{1}{||v\rangle|^2} |\langle v_{target}|v_{state}\rangle|^2$$

Optimizing Control

Control degrees of freedom provides a means for improving hardware performance

G. Quiroz PRA 99, 062306 (2019)

Conclusions

- Limits on binary classification
 - Dependent on number of encoded patterns
 - Fidelity metric matters
- Reverse annealing can improve performance
 - Dependent upon number of encoded patterns
- Optimized control can improve performance
 - Forward annealing
 - Offset optimization most beneficial
 - Reverse annealing

JOHNS HOPKINS APPLIED PHYSICS LABORATORY