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Motivation
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Objective

• Leverage quantum annealing for pattern recognition in high energy physics particle 
detection 

Why is this problem hard?

• Pattern matching accuracy is highly dependent on noise, detector resolution, and the 
number of simultaneous particle tracks

Why quantum annealing?

• Quantum annealing potentially
• Enables more accurate pattern matching 
• Enables access to a family low-energy solutions that could improve track 

reconstruction



From Pattern Matching to Track Reconstruction
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Raw data Pattern matching 
discriminates between 
signals from possible 
track candidates (gray) 
and noise (red)

Track reconstruction 
algorithms are run over 
possible track 
candidates

Detector Pattern Matching Track Reconstruction



Pattern Matching
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signals from  particle tracks
noise

• Pattern matching allows the data to be 
pruned of noise and background signals 
before track reconstruction
• Patterns from experimental data 

compared to known library
• Library produced from experimental data 

or simulator

• Pattern matching can be implemented in 
hardware as a triggering system
• Dependent on granularity, noise level, 

efficiencies
• Especially important for high luminosity 

experiments like those using the High-
Luminosity LHC



Track Reconstruction for HEP
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Track reconstruction

• Process of determining the trajectory of a 
particle from detector signals

• Highly dependent on detector design

• Usually computationally expensive

• Complicated by random noise, detector 
inefficiencies, high detector resolution, and 
many simultaneous tracks



Tree Search
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• Organizing library into tree structure 
of increasing resolution decreases 
time to search library

• Avoids linear growth of 
computation with granularity

• Noise and number of 
simultaneous tracks has large 

impact on algorithm



Content Addressable Memory
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Traditional Memory

• Input is address location of the desired content

• Output is the content of the address

Content Addressable Memory (CAM)

• Input is content of the stored memory

• Output is the location of the desired content

00

01

10

11

1 0 1 1 0

0 1 1 0 1

1 0 0 0 1

1 0 0 1 1

00

01

10

11

1 0 1 1 0

0 1 1 0 1

1 0 0 0 1

1 0 0 1 1

Key Value

10

1 0 0 0 1

Key Value

1 0 0 0 1

10



Quantum CAM 
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Problem Design

Cast CAM problem as an adiabatic quantum optimization problem
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QCAM Binary Classification
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We cast the HEP pattern matching problem as a binary classification problem

We only care if the recalled pattern is in the library



Forward Annealing Results
Recalling patterns in the library
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Metrics



Forward Annealing Results
Adding Inefficiency
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Inefficiency: Each cell involved in a pattern is associated with a probability of detection

Key Fidelity Pattern Library Fidelity

𝑝 = 8 𝑝 = 16

𝑝 = 32 𝑝 = 64

𝑝 = 8 𝑝 = 16

𝑝 = 32 𝑝 = 64



Forward Annealing Results
Adding Inefficiency
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Inefficiency: Each cell involved in a pattern is associated with a probability of detection

Target Pattern FidelityKey Fidelity

𝑝 = 8 𝑝 = 16

𝑝 = 32 𝑝 = 64

𝑝 = 8 𝑝 = 16

𝑝 = 32 𝑝 = 64



Forward Annealing Results
Adding False Detection Events
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False Detections: Each cell not involved in a track pattern is associated with a probability 
of detection

Key Fidelity Pattern Library Fidelity

𝑝 = 8 𝑝 = 16

𝑝 = 32 𝑝 = 64

𝑝 = 8 𝑝 = 16

𝑝 = 32 𝑝 = 64



Forward Annealing Results
Adding False Detection Events
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False Detections: Each cell not involved in a track pattern is associated with a probability 
of detection

Key Fidelity Target Pattern Fidelity

𝑝 = 8 𝑝 = 16

𝑝 = 32 𝑝 = 64

𝑝 = 8 𝑝 = 16

𝑝 = 32 𝑝 = 64



Reverse Annealing Results
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Anneal

Reverse 
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Optimizing Control
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Control degrees of freedom provides a means for improving hardware performance

𝑝 = 64

G. Quiroz PRA 99, 062306 (2019)



Conclusions
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• Limits on binary classification
• Dependent on number of encoded patterns
• Fidelity metric matters

• Reverse annealing can improve performance
• Dependent upon number of encoded patterns

• Optimized control can improve performance
• Forward annealing

• Offset optimization most beneficial
• Reverse annealing




