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Free energy

Drug discovery

. Machine Learning
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protein tyrosine phosphatase 1B (PTP1B); PDB: 2QBS,




Free Energy of Binding

* Binding affinity is defined as free energy change associated
with binding of a drug to a target protein

Drug B

Drug A

FA FB

* AF = Fg — F, indicates how potent drug B is compared to drug A




Free Energy Computation

Expression for free energy

Phase Space

F=—-kTinZ
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 Computing partition function involves summing over all the
states x a system can adopt

* Not possible to enumerate all the states

* Only few states contribute significantly to the sum




Free Energy as Ensemble Average

Ratio of partition functions can be expressed as a
Boltzmann average

Za

B(Fg —Fa) = —In (Z) = < M >Boitzmann average

* This requires generation of samples according to Boltzmann
distribution

e Different variants of MCMC is used for sampling

 Sampling from a rugged energy landscape is a challenge




Research questions

* Can we use the D-Wave for computing ensemble averages?

* Does it offer any advantages over classical techniques?




Thermodynamic Integration

* Free energy difference between states A and B can be computed along a path of
transformation HO) = (1 — )H, + AHj
State B

Drug A Drug B
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— AF = Fy — F,
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* Free energy difference computed from ensemble average
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Boltzmann Sampling

* H(s) = A(s)H; + B(s)H,

where Hy = — ), /" is the driver(mixing) Hamiltonian and
H, = ¥;;Jijo{of + X; h;o is the problem Hamiltonian

Energy (GHz)

* Towards the end of anneal, when transverse field diminishes,
dynamics slows down and system essentially freezes

E, (GHz)

e Itis conjectured that at the “freeze-out” point, device returns
Boltzmann distributed samples at an instance-dependent
inverse-temperature f. ¢ different from the hardware

temperature

E -

e If "freeze-out” point is earlier in the anneal, such promises
cannot be made
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Amin et. al, https://arxiv.org/pdf/1503.04216.pdf
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Boltzmann Sampling

* D-Wave samples from an unknown device temperature S, different from the
physical temperature

* Close examination of the samples must be done to ensure that samples
are indeed Boltzmann distributed

* A cheap post-processing which incurs small overhead sounds promising

* Insituations where post-processing succeeds, one doesn’t need to obtain S, ¢

* Post-processing brings samples close to the target distribution

* Such an approach can be more efficient when distribution exhibits well-separated
modes

Global warming: Temperature estimation in annealers, Raymond et. al




Simulation detalls

We ran our simulations on USRA 2000Q D-Wave machine
Post-processing was switched on
B = 4.0 was set as the post-processing temperature for all the runs

D-Wave heuristic solver was used to find the embedding for all models except the
Chimera graph based model

Spin-reversal transforms were used

Exact values and classical sampling techniques were used for comparisons




Models studied

* 1D Ising spin model
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1D Ising model

* Integration path along a path where interaction strength J changes

E(x) = Z]ijxixj
L,j

* Integrand is simply the energy in this case. N = 48 spins
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2D Ising square lattice
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Boltzmann Machines

» Reference graph is a “bias-only” model H = (1= A)Hyer + AHtgrget
* Calculations done on graph size 2N
* Annealed Importance Sampling (AlS) was used for comparisons
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Protein-ligand Model

* We use diamond encoding to model the
protein-ligand Hamiltonian in the QUBO form

* An improved encoding scheme was devised that uses
fewer variables compared to the original
implementation

» Self-avoiding walk of the chain is modeled using
penalty terms in the Hamiltonian

* We study a six amino acid protein with a ligand
fixed at a lattice position. Ligand has the same interaction
with all the acids.

Construction of Energy Functions for Lattice Heteropolymer Models: A Case Study in
Constraint Satisfaction Programming and Adiabatic Quantum Optimization, Babbush et. al




Protein-ligand Binding Free Energy

Along the integration path, interaction strength of the drug with the protein is
gradually increased

~37 binary variables in the Hamiltonian

Embedding uses relatively long qubit chains

The current precision limit on the device leads to under-specification of the
Hamiltonian

BAF, 00 = —2.43
BAF,,;, = —2.36 + 0.48
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Conclusions

We examined the feasibility of using Quantum annealing based sampling

for free energy calculations

Our results indicate comparable accuracy compared to the classical samplers

We would like to investigate cases where QA can possibly show considerable
improvements over a purely classical scheme
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