Scott N. Genin, PhD *Head of Materials Discovery*

+1 (416) 560-2933 scott.genin@otilumionics.com www.otilumionics.com

Simulating Electronic Structure on Noisy Quantum Hardware: From Gate to Annealing Models
September 2018

What We Do

Developing advanced materials to solve large scale industrial problems for displays + lighting

Organic Light Emitting Diode (OLED)

Light from organic pigments sandwiched between electrodes

10/3/18

Organic Pigments

Closed Loop Development with Customer Feedback

In-house end-to-end testing from materials discovery up to production testing

Our Materials Discovery Platform

Advanced computation + simulation + ML/Al

Properties

- Vapor pressure
- Optical constants
- Electronic structure
- Film forming
- Crystallinity
- Etc.

Structure

Example: Aerelight for Print™

Flexible OLED module for print + packaging

Quantum Chemistry

Why do we care?

Understanding and prediction of the Structure -> Property relationship

Current Model of Quantum Chemistry on universal QPUs

Some not so good news

All of this done on a classical computer... lots of work

The hope is to surpass the HF wavefunction/orbitals on a quantum computer

Variational Quantum Eigensolver

$$\widehat{H} = \sum \widehat{P}_i$$
 Where $\widehat{P}_i = \prod \sigma_j^n$, $n = \{x, y, z\} \& j = \text{qubit index}$

$$E_0 \leq \sum_i \langle \Psi_i | \hat{P}_i | \Psi_i \rangle$$
 Where Ψ is wavefunction

With serial processing, time scales linearly with number of Pauli words

BK transformation generates O(N⁴) Pauli words

^{*}Peruzzo et al. Nat. Comm. 5 (2014)

Ansatz Construction – Conventional Wisdom

UCC and Variational

- To get close to FCI, often depth >30
- 2-qubit operators > 10 = too much error on QPU (19Q-Acorn)
- UCC is not rigorous solution of ES, but a problem that is difficult for a classical computer to solve

10/3/18

OTI Lumionics Inc. © 2018 - Confidential

Hidden Consequences

Is this "kink" a hardware problem or theory problem?

Kandala et al. (2017) Nature 549, 242-246

Broken Symmetry Transition – H₂ on QPU

Broken symmetry GHF between 1.5 A - 1.6 A, as it transitions from singlet to triplet

Our Innovation: Error Correction

Reduces error in finale solution by reducing noise

Nosie filter removes random bit flips based on incorrect electron numbers and spin

13

UCC vs. QCC

$$\Psi(\tau,\omega) = \widehat{U}(\tau)|\omega\rangle$$

General form of CC methods

$$\widehat{U}(\tau) = \prod_{k=1}^{N} \exp\left(\frac{i\tau_k \widehat{P}_k}{2}\right)$$
 \widehat{P} is Pauli word entanglers

$$E(\tau,\omega) = \langle \omega | U(\tau)^{\dagger} \widehat{H} U(\tau) | \omega \rangle$$

QCC is closed form opposed to UCC which is not

Example Ansatz for QCC

PES Curve for LiH

Our Innovation: Quantum Adiabatic Solver

Enables quantum chemistry to be run on annealer

Universal Gate

IBM Q (20 qubits)

Quantum Annealer

D-Wave 2000Q (2048 qubits)

Annealer is suitable for solving binary optimization problems (not applicable for quantum chemistry)

We have developed a quantum solver for quantum chemistry on a quantum annealer

Solution on Quantum Annealer

- Connection between classical and quantum optimization
- Frequency when to queue the D-wave

First Iteration Deviation: Quantum vs. Classical

Simulation of Band Gap: Quantum vs Classical

Where Are We Today

Started to test industrial problems

We have demonstrated industrial relevant size simulations on quantum hardware

We are here!

10,000 qubits

Quantum Computing R&D

CCSD Demonstrated on Quantum Hardware

*IBM never demonstrated CCSD accuracy on any molecule greater than H₂

Energies obtained for small molecules on hardware higher in accuracy than IBM