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Overview

Higgs boson classification (QAML-2):

e Phrase error minimization in an Ising model
e Use multiple anneals to zoom into the energy surface



Overview

Higgs boson classification (QAML-2):

e Phrase error minimization in an Ising model
e Use multiple anneals to zoom into the energy surface

Charged particle tracking:

e Adapt large-scale computations to NISQ hardware
e Match state-of-the-art classical tracking algorithms
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QAML algorithm

A. Mott, J. Job, J.-R. Vlimant, D. Lidar, M. Spiropulu. "Solving a
Higgs optimization problem with guantum annealing for machine
learning.” Nature 550.76/6 (2017). 3/5.

“Quantum annealing for machine learning” (QAML)
Rationale: minimize squared error

Method: create strong classifier from sum of weak classifiers
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QAML algorithm

Rationale: minimize squared error

Method: create strong classifier from sum of weak classifiers
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QAML algorithm

Rationale: minimize squared error

Method: create strong classifier from sum of weak classifiers

Training label Weak classiier = +1/N

Iraining set
2
— ) /

argmin Z y' T Z 5 Ci(Xr)
S =1 =1
N \

Classifier weight Training input




10

QAML algorithm

Rationale: minimize squared error

Method: create strong classifier from sum of weak classifiers

Higing = ZZZS (X,) 5 ¢X,) — ZZS cAX.) Y,

=1 j>1 =1 =1 7=1
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—1Iggs problem construction

Can we “rediscover” the Higgs boson with QAML?
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Can we “rediscover” the Higgs boson with QAML?




—1Iggs problem construction

Higgs boson
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—1Iggs problem construction

Higgs boson

Other Standard Model (SM) processes
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—1Iggs problem construction

Eight kinematic observables assembled from decay photons:

Transverse momentum + diphoton mass

pi/m,,, pilm,. (pr+pp)°Im,,, (pr—pp)im,,, pim,, An, AR, |n"|

e SE—

Diphoton angle



—1Iggs problem construction

Thirty-six weak classifiers constructed from division and
multiplication of eight observables

10°] — Higgs signal
104] 5 Background
10°3]
102]
107
0 2 1 4 6
'DT/mw

Caltech '



—1Iggs problem construction

Thirty-six weak classifiers constructed from division and
multiplication of eight observables
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HIggs classification results
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HIggs classification results

Optimize simulated annealing,
deep neural network, and
XGBoost hyperparameters

Measure area under ROC curve
on 200,000 simulated events

AUROC
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QAML-Z algorithm

A. Zlokapa, A. Mott, J. Job, J.-R. VIiimant, D. Lidar, M. Spiropulu.
‘Quantum adiabatic machine learming with zooming." arXiv:
1908.04480 [guant-ph] (2019).

Two improvements:
e Zoom into the energy surface — continuous optimization
e Augment the set of classifiers — stronger ensemble
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier
weights by running multiple guantum anneals
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier
weights by running multiple guantum anneals

Energy

M QAML: take discrete values +1
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier
weights by running multiple guantum anneals

Energy

M QAML: take discrete values +1
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier
weights by running multiple guantum anneals

Energy

M QAML: take discrete values +1
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Classifier weight




20

QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier
weights by running multiple guantum anneals

Energy

M QAML-Z: search for weights in [-1, 1]
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier
weights by running multiple guantum anneals

Energy
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier
weights by running multiple guantum anneals

Energy
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QAML-Z algorithm: Augmentation

Augmentation: create multiple classifiers from the same
combination of physical variables by offsetting distribution cut
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combination of physical variables by offsetting distribution cut
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QAML-Z algorithm: Augmentation

Augmentation: create multiple classifiers from the same
combination of physical variables by offsetting distribution cut

QAML
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QAML-Z algorithm: Augmentation

Augmentation: create multiple classifiers from the same
combination of physical variables by offsetting distribution cut
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QAML-Z algorithm: Augmentation

Augmentation: create multiple classifiers from the same
combination of physical variables by offsetting distribution cut
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HIggs classification results
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HIggs classification results

QAML-Z vs. QAML

Improves advantage over DNN
by ~40% for small training sets

Shrinks disadvantage to DNN
by ~50% for large training sets
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HIggs classification results

QAML-Z vs. QAML

Improves advantage over DNN
by ~40% for small training sets

Shrinks disadvantage to DNN
by ~50% for large training sets
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HIggs classification results
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HIggs classification results

Both zooming and
augmentation improve
performance

AUROC
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Cluster “hits”

rack reconstruction

In a detector by particle instance
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Cluster “hits”

rack reconstruction

In a detector by particle instance
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rack reconstruction

Cluster “hits” in a detector by particle instance




rack reconstruction

Cluster “hits” in a detector by particle instance

1 d
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Strandlie, Are, and Rudolf Fruhwirth. "Track and vertex reconstruction: From classical to adaptive methods." Reviews of Modern Physics 82.2 (2010): 1419.
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rack reconstruction

Cluster “hits” in a detector by particle instance Low momentum
E o — £ 0
High momentum
1 05 N ?m] 0.5 1 ~1 -0.5 ) Fm] 0.5 1

Strandlie, Are, and Rudolf Fruhwirth. "Track and vertex reconstruction: From classical to adaptive methods." Reviews of Modern Physics 82.2 (2010): 1419.
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Classical methods

Upgrade of LHC to high luminosity
increases the number of hits per
event by a factor of 5

Current tracking (Kalman filter) is
thought to scale exponentially with
the number of hits

Possibility of guantum speedup?

Tracking time (a.u.)
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CMS Collaboration. "CMS Tracking POG Performance Plots For 2017 with Phasel pixel detector.” (2017).



ISIng model formulation

Make each edge a binary variable: turn edge “on” or “off”

1000 - 1000 -
750 - | 750 -
500 - 500 -

250 - 250 - N

5 3 E §
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ISIng model formulation

A. Zlokapa, A. Anand, J.-R. Vlimant, J. M. Duarte, J. Job, D. Lidar,
M. Spiropulu. “Charged particle tracking with guantum annealing-
inspired optimization." arXiv:1908.044 75 |guant-ph] (2019).

Affinity between edges/and/

\ 1 if edge is on; O if edge is off

H, = — Z Z J;i8:8; — Z hs.
i j>i i \

Prior expectation on edge /



ISIng model formulation

Expect helical tracks due to a charged particle moving in a
uniform magnetic field

r (mm)
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ISIng model formulation

Expect helical tracks due to a charged particle moving in a
uniform magnetic field
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ISIng model formulation

Helical tracks High-momentum bias Track bifurcation penalty Global edge penalty

N I/

¢
e 2
cos™(0,,,.) + p cos™ (P p.) Ze — 24
E = — E ( o — SabShe T ;72, ro—r Ve SabSpe T A ZI abSaC_l_zl, SabSch +Z ﬁP(SClb)

a,b,c Fab T The a,bc a

b+#c a#+c /

Edge orientation probabillity
(Gaussian kernel density estimation)

Beam spot geometry
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Dimension challenge

Higgs event at LHC: 103 to 104 detector hits =— ~107 edges

e Divide into 16 sectors: ~10° edges
e Remove edges with Gaussian KDE: ~1023 edges
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Dimension challenge

Higgs event at LHC: 103 to 104 detector hits =— ~107 edges

e Divide into 16 sectors: ~10° edges
e Remove edges with Gaussian KDE: ~1023 edges

D-Wave 2X: 33 fully-connected qubits

e Sparse Ising model weights: ~102 qubits
e Split into disjoint sub-graphs: ~10 problems per sector
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Dimension challenge

Disjoint sub-graphs: prune and divide

Initial graph True graph
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Dimension challenge

Disjoint sub-graphs: prune and divide

Pruned graph True graph
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Dimension challenge

Disjoint sub-graphs: prune and divide

Disjoint sub-graphs True graph
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Dimension challenge

Higgs event at LHC: 103 to 104 detector hits =— ~107 edges

e Divide into 16 sectors: ~10° edges
e Remove edges with Gaussian KDE: ~1023 edges

D-Wave 2X: 33 fully-connected qubits

e Sparse Ising model weights: ~102 qubits
e Split into disjoint sub-graphs: ~10 problems per sector
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Dimension challenge

Higgs event at LHC: 103 to 104 detector hits =— ~107 edges

e Divide into 16 sectors: ~10° edges
e Remove edges with Gaussian KDE: ~1023 edges

D-Wave 2X: 33 fully-connected qubits

e Sparse Ising model weights: ~102 qubits
e Split into disjoint sub-graphs: ~10 problems per sector

Result: ~100 Ising model variables on ~100 qubits
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Results

Performance metrics: efficiency (recall) and purity (precision)
measured on the TrackML dataset

true tracks reconstructed

efficiency =

true tracks

true tracks reconstructed

purity =

tracks reconstructed




Results
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Results

1.0

—

Maximum efficiency
(after pre-processing)

Efficiency

0.8 -

O
(@)
l

O
A
|

O
N
|

Simulated
D-Wave 2X annealing

Higgs in 2011-2012

‘III i § . 4 5 4

O
o

k

7é0 1OIOO

Particles/event

QA ¥ Random ¢

SA

Caltech '



1 - Purity

10° -
;III ]E i i

]IIH

10_23

10—3 -

k

10_13

Results

QA

250

i

500 750 1000
Particles/event

Random

.

SA

o4

Caltech '



Results

1.0 1.0 1.0
0.9 A | : 0.9 + - '_|_|_ 0.9 +
> > .
O @) O
5 5 5
G 08- G 087 g 087
iy iy L
_ ~ 0.7 - Y - ~ (.7 1
Efficiency . 5 0.7 < 0.7
= = =
0.6 - 0.6 - 0.6 -
0.5 ""IO ' oo T 1 0.5 T T T T 0.5 T T T
10 10 8 10 12 14 16 18 —2 0 2
Transverse momentum (GeV/c) Track length (# of hits) ¢ (radians)
1.00 1.00 1.00
_J_'_'_I—O—I_|_L|- :
0.98 - | U 0.98 - I By B 0.98 -
| I e I
= z -
S 0.96 - S 0.96 - S 0.96 -
o (a o
S v S
_ c 0.94 - © 0.94 - c 0.94 1
Purity = - | =
0.92 - 0.92 A 0.92 -+
0.90 S P A 0.90 . ! . ! 0.90 . . .
10 10 8 10 12 14 16 18 —2 0 2
Transverse momentum (GeV/c) Track length (# of hits) ¢ (radians)

Caltech



Efficiency

Purity

1.0
0.9 - | |
>
(@)
o
g 087
T,
V4 7 -
2 ° 7%
|_
0.6 -
0.5 —rT —r——
10° 101
Transverse momentum (GeV/c)
1.00
Ty |
0.98 - | 1]
> I
S 0.96 -
o
V4
© 0.94 - o
= 99%
0.92 -
0.90 —rr ——r
100 101

Transverse momentum (GeV/c)

Track Efficiency

Track Purity

Results

1.0

O
O
1

o
(0]
1

©
~
]

o
(@)
1

O
U
0]

10 12 14 16

Track length (# of hits)

18

1.00

0.98 A

0.96 -

0.94 -

0.92 -

0.90

10 12 14 16
Track length (# of hits)

18

Track Efficiency

Track Purity

=
o

o
O
1

O
(00)
1

©
~
1

O
@)
1

o
U

-2 0
¢ (radians)

1.00

0.98 A

0.96 -

0.94 -

0.92 -

0.90

-2 0
¢ (radians)

66

Caltech



Conclusion

67

Caltech '



68

Beyond HEP: What's new in QML

Substantial improvement demonstrated by QAML-Z

e Widespread applicability of successive anneals on
iteratively refined problems
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Beyond HEP: What's new in QML

Substantial improvement demonstrated by QAML-Z

e Widespread applicability of successive anneals on
iteratively refined problems

Successful encoding of big data in the era of NISQ

e General methodology of pruning Ising models with a
successful outcome
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Beyond HEP: What's new in QML

Substantial improvement demonstrated by QAML-Z

e Widespread applicability of successive anneals on
iteratively refined problems

Successful encoding of big data in the era of NISQ

e General methodology of pruning Ising models with a
successful outcome

Competitive results with state-of-the-art classical algorithms
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—1Iggs problem construction

Can we “rediscover” the Higgs boson with QAML?
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Can we “rediscover” the Higgs boson with QAML?




—1Iggs problem construction

boson with QAML?

Can we “rediscover” the Higgs

lgs)
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QAML-Z algorithm: Hamiltonian

Zooming: replace each binary weight s; with continuous
weight z2.(f) governed with search breadth o(t) = 1/2'.

Augmentation: generate multiple shifted classifiers c;(Xx_) for
each original classifier c;(X,).

Anneal for iterationst =0,1,2, ..., T — 1.
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QAML-Z algorithm: Hamiltonian

Each iteration 7, anneal:

A N N N N
H(t) — Z |:Z [_Cil + Z //t]l(t)Cl]l] G(t)sil + z Z Cijlgz(t)silsjl
[=—A Li=I J>1 =1 j>i

where we have defined:

S S

Ci= ), cux,)y, Cj =) culX)ci(x,)

=1 =1
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QAML-Z algorithm: Hamiltonian

Each iteration 7, anneal:

A N N N N
Hity= ) [2 —Cy+ Y wi(OCy [ oDy + Y Y Cuo*Dsys

[=—A Li=1 Jj>1 =1 j>i
and update continuous weights from spins:
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ROC curve
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ROC curve

1

23

> 5

. o .=
Metric of performance: area 2 S
under receiver operating c 2
characteristic (ROC) curve 05
=)

0L~
0

False positive rate
(background rejection)



81

ROC curve

Metric of performance: area
under receiver operating
characteristic (ROC) curve

True positive rate

(signal efficiency)

Perfect classifier

False positive rate
(background rejection)
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ROC curve

Metric of performance: area
under receiver operating
characteristic (ROC) curve

True positive rate
(signal efficiency)

Perfect classifier

False positive rate
(background rejection)



Energy

HIggs classification results

Training set size 1000

—0.022 -
—0.026 - 0.650 -
—0.030 -
@)
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0 1 2 3 4 5 5) 7
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0 1 2 3 4 5 6 7

lteration number

—— Augmented classifiers, no zoom  —— QAML —#— QAML-Z

Dashes indicate test set, solid line indicates training set
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TrackML Challenge: top quark events with 15% noise

Dataset

— 1000 4
Y | &
— | 16 17 18
800 2
. B 12 12
| : I
600
400 12 13 14
=1 N2
]2 12
s ‘ | | | IJ
oL 1 2 ]
-3000 -2000 —1000 1000 2000 3000
Z [mm]

Amrouche, Sabrina, et al. "The Tracking Machine Learning challenge: Accuracy phase." arXiv preprint arXiv:1904.06778 (2019).
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ISIng model formulation

Bias towards high momentum tracks that are more important

1000 A
750 -

500 -

(cos%cbabc)) \[ =
R SabSbe

.-
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—250 A \\
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—750 A

—1000 -

—1000 —-750 -500 —-250 O 250 500 750 1000
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ISIng model formulation

Bias towards high momentum tracks that are more important

1000 A
750 -

500 -

2/ 250 -
COS™ (P ,p.) N

o Sabdbc
Fab + 7 bc ~250 1

—500 A

y (mm)

—750 A

—1000 -

—1000 —-750 -500 —-250 O 250 500 750 1000
X (mm)
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ISIng model formulation

Tracks should point towards the beam spot at the origin

¢

Lo T Lyg
Fe — 14

) SabShe
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1000

800 A
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2000
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ISIng model formulation

In general, tracks shouldn’t split at or merge into a single hit

* b
C
SabSac T SabSch /
a
a

38



Dimension challenge

Use Gaussian kernel density estimation to provide a prior on
an edge being “on” or “off” based on orientation and position

(y — P(S,))S 0

z-intercept (mm)
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REesults
Ground State energy / True solution energy
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Quantum speedup”

Inconclusive results for guantum speedup
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Quantum speedup’?

Inconclusive results for qguantum speedup

e Classical: O(exp(# of hits))

e Quantum: preprocess at O ((# of hits)z), inconclusive
QUBO-solving time
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Quantum speedup’?

Inconclusive results for qguantum speedup

e Classical: O(exp(# of hits))

e Quantum: preprocess at O ((# of hits)z), inconclusive
QUBO-solving time

Could use specialized classical hardware for particle tracking
at the trigger level: 1 PB/s reduced to 1 GB/s



Quantum speedup’?

Pre-processing to construct the Ising model scales like
O(h?) where an event has £ hits

Singlet selection
with Gaussian KDE —

O(h?)

Ising model construction

— O(h?)
Disjoint sub-graph

flood-fill search

Annealing
Classical: O(exp(ch?))
Quantum: O(?)




Quantum speedup’?

Pre-processing reduces the simulated annealing solving time
from O(exp(ch?)) where an event has A hits

§ Experimental convergence time (with pre-processing)
Expected time without pre-processing

o
Ul
o
o
o

104000 -

Ime per sector

103000 -

102000 _

101000 -

Simulated annealing t

=
o
o

- - - - 2= - 2= 2= 2= 2= 2=

250 500 750 1000 1250 1500 1750 2000
Number of tracks in event
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Quantum speedup’?

The problem remains NP-hard
after pre-processing, so SA is
exponential in the number of
Ising model variables

For an event divided into K

sub-graphs with m; edges

each, we expect solving time
K

0, 2 exp (cml-)
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o
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w NN
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Quantum speedup’?

Quantum annealing is expected to reduce the size of ¢ but
leave the problem exponential

K

0, Z exp (cml-)

=1

Can’t measure a single time to solution, but can change
annealing time and measure change in performance
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