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Overview

Higgs boson classification (QAML-Z):


• Phrase error minimization in an Ising model

• Use multiple anneals to zoom into the energy surface
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Overview

Higgs boson classification (QAML-Z):


• Phrase error minimization in an Ising model

• Use multiple anneals to zoom into the energy surface


Charged particle tracking:


• Adapt large-scale computations to NISQ hardware

• Match state-of-the-art classical tracking algorithms



QAML-Z: Higgs boson classification
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QAML algorithm

“Quantum annealing for machine learning” (QAML)


Rationale: minimize squared error


Method: create strong classifier from sum of weak classifiers

A. Mott, J. Job, J.-R. Vlimant, D. Lidar, M. Spiropulu. "Solving a 
Higgs optimization problem with quantum annealing for machine 

learning." Nature 550.7676 (2017): 375.
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QAML algorithm

Rationale: minimize squared error


Method: create strong classifier from sum of weak classifiers
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∑
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si ci(xτ)
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QAML algorithm

Rationale: minimize squared error


Method: create strong classifier from sum of weak classifiers

argmin
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i=1

si ci(xτ)

2Training set

Training label

Training input

Weak classifier = ±1/N

Classifier weight
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QAML algorithm

Rationale: minimize squared error


Method: create strong classifier from sum of weak classifiers

HIsing =
N

∑
i=1

N

∑
j>i

S

∑
τ=1

si ci(xτ) sj cj(xτ) −
N

∑
i=1

S

∑
τ=1

si ci(xτ) yτ
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Higgs problem construction

Can we “rediscover” the Higgs boson with QAML?
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Higgs problem construction

Can we “rediscover” the Higgs boson with QAML?

Diphoton pair
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Higgs problem construction

Higgs boson
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Higgs problem construction

Higgs boson Other Standard Model (SM) processes
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Higgs problem construction

Eight kinematic observables assembled from decay photons:

p1
T/mγγ , p2

T/mγγ , (p1
T + p2

T)2/mγγ , (p1
T − p2

T)2/mγγ , pγγ
T /mγγ , Δη , ΔR , |ηγγ |

Transverse momentum + diphoton mass

Diphoton angle
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Higgs problem construction

Thirty-six weak classifiers constructed from division and 
multiplication of eight observables
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Higgs problem construction

Thirty-six weak classifiers constructed from division and 
multiplication of eight observables
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Higgs classification results

Optimize simulated annealing, 
deep neural network, and 
XGBoost hyperparameters


Measure area under ROC curve 
on 200,000 simulated events
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Higgs classification results

Optimize simulated annealing, 
deep neural network, and 
XGBoost hyperparameters


Measure area under ROC curve 
on 200,000 simulated events

D-Wave 2X

Be
tte

r
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QAML-Z algorithm
A. Zlokapa, A. Mott, J. Job, J.-R. Vlimant, D. Lidar, M. Spiropulu. 

“Quantum adiabatic machine learning with zooming." arXiv:
1908.04480 [quant-ph] (2019).

Two improvements:

• Zoom into the energy surface — continuous optimization

• Augment the set of classifiers — stronger ensemble
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier 
weights by running multiple quantum anneals
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Zooming: perform a binary search on continuous classifier 
weights by running multiple quantum anneals
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier 
weights by running multiple quantum anneals

En
er

gy

µ0 = 1

s0 = 1

1-1

QAML: take discrete values ±1

Classifier weight Ising model spin
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier 
weights by running multiple quantum anneals

En
er

gy

µ0(0) = 0 1-1

QAML-Z: search for weights in [-1, 1]
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier 
weights by running multiple quantum anneals

µ0(0) = 0
En

er
gy

µ0(1) = 0.5

s0 = 1

1-1
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QAML-Z algorithm: Zooming

Zooming: perform a binary search on continuous classifier 
weights by running multiple quantum anneals

µ0(0) = 0 µ0(1) = 0.5

En
er

gy

µ0(2) = 0.25

s0 = -1

1-1
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QAML-Z algorithm: Augmentation

Augmentation: create multiple classifiers from the same 
combination of physical variables by offsetting distribution cut
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QAML-Z algorithm: Augmentation

Augmentation: create multiple classifiers from the same 
combination of physical variables by offsetting distribution cut

QAML

Kinematic variables

Weak classifier
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QAML-Z algorithm: Augmentation

Augmentation: create multiple classifiers from the same 
combination of physical variables by offsetting distribution cut

QAML

Background

Higgs

Background Higgs
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QAML-Z algorithm: Augmentation

Augmentation: create multiple classifiers from the same 
combination of physical variables by offsetting distribution cut

QAML QAML-Z
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Higgs classification results

QAML-Z vs. QAML


Improves advantage over DNN 
by ~40% for small training sets


Shrinks disadvantage to DNN 
by ~50% for large training sets
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Higgs classification results

Deep neural network

QAML-Z

(D-Wave 2X)

QAML

(D-Wave 2X)

QAML-Z vs. QAML


Improves advantage over DNN 
by ~40% for small training sets


Shrinks disadvantage to DNN 
by ~50% for large training sets
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Higgs classification results

Both zooming and 
augmentation improve 

performance
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Higgs classification results

Both zooming and 
augmentation improve 

performance
Augmentation

Zooming



Charged particle tracking
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Track reconstruction

Cluster “hits” in a detector by particle instance
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Track reconstruction

Cluster “hits” in a detector by particle instance

Strandlie, Are, and Rudolf Frühwirth. "Track and vertex reconstruction: From classical to adaptive methods." Reviews of Modern Physics 82.2 (2010): 1419.



!45

Track reconstruction

Cluster “hits” in a detector by particle instance

Strandlie, Are, and Rudolf Frühwirth. "Track and vertex reconstruction: From classical to adaptive methods." Reviews of Modern Physics 82.2 (2010): 1419.

Low momentum

High momentum
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Classical methods

Upgrade of LHC to high luminosity 
increases the number of hits per 
event by a factor of 5


Current tracking (Kalman filter) is 
thought to scale exponentially with 
the number of hits


Possibility of quantum speedup?

CMS Collaboration. "CMS Tracking POG Performance Plots For 2017 with PhaseI pixel detector." (2017).
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Ising model formulation

Make each edge a binary variable: turn edge “on” or “off”
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Ising model formulation

H1 = − ∑
i

∑
j>i

Jijsisj − ∑
i

hisi

Affinity between edges i and j

Prior expectation on edge i

A. Zlokapa, A. Anand, J.-R. Vlimant, J. M. Duarte, J. Job, D. Lidar, 
M. Spiropulu. “Charged particle tracking with quantum annealing-

inspired optimization." arXiv:1908.04475 [quant-ph] (2019).

1 if edge is on; 0 if edge is off
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Expect helical tracks due to a charged particle moving in a 
uniform magnetic field

Ising model formulation

a

b c

rab
rbc

θabc
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Expect helical tracks due to a charged particle moving in a 
uniform magnetic field

Ising model formulation

a

b c

rab
rbc

θabc−( cosλ(θabc)
rab + rbc ) sabsbc
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Ising model formulation

E = − ∑
a,b,c ( cosλ(θabc) + ρ cosλ(ϕabc)

rab + rbc ) sabsbc + η∑
a,bc (zc −

zc − za

rc − ra
rc)

ζ

sabsbc + α ∑
b≠c

sabsac + ∑
a≠c

sabscb + ∑
a,b

(γ − βP(sab)) sab

Helical tracks High-momentum bias

Beam spot geometry

Track bifurcation penalty Global edge penalty

Edge orientation probability

(Gaussian kernel density estimation)
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Dimension challenge
Higgs event at LHC: 103 to 104 detector hits  ~107 edges


• Divide into 16 sectors: ~105 edges

• Remove edges with Gaussian KDE: ~103 edges

⟹
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Dimension challenge
Higgs event at LHC: 103 to 104 detector hits  ~107 edges
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D-Wave 2X: 33 fully-connected qubits


• Sparse Ising model weights: ~102 qubits

• Split into disjoint sub-graphs: ~10 problems per sector

⟹



!54

Disjoint sub-graphs: prune and divide

Dimension challenge

Initial graph True graph
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Disjoint sub-graphs: prune and divide

Dimension challenge

Pruned graph True graph
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Disjoint sub-graphs: prune and divide

Dimension challenge
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Higgs event at LHC: 103 to 104 detector hits  ~107 edges


• Divide into 16 sectors: ~105 edges

• Remove edges with Gaussian KDE: ~103 edges


D-Wave 2X: 33 fully-connected qubits


• Sparse Ising model weights: ~102 qubits

• Split into disjoint sub-graphs: ~10 problems per sector


Result: ~100 Ising model variables on ~100 qubits

⟹

Dimension challenge
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Results
Performance metrics: efficiency (recall)  and purity (precision) 
measured on the TrackML dataset

purity =
# true tracks reconstructed

# tracks reconstructed

efficiency =
# true tracks reconstructed

# true tracks
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Results
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Results

Maximum efficiency

(after pre-processing)
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Results

Maximum efficiency

(after pre-processing)

D-Wave 2X
Simulated 
annealing
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Results

Maximum efficiency

(after pre-processing)

Higgs in 2011-2012

D-Wave 2X
Simulated 
annealing
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Results
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Results

Efficiency

Purity
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Results

97%

99%

Efficiency

Purity



Conclusion
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Substantial improvement demonstrated by QAML-Z


• Widespread applicability of successive anneals on 
iteratively refined problems

Beyond HEP: What’s new in QML?
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• General methodology of pruning Ising models with a 
successful outcome
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Substantial improvement demonstrated by QAML-Z


• Widespread applicability of successive anneals on 
iteratively refined problems


Successful encoding of big data in the era of NISQ


• General methodology of pruning Ising models with a 
successful outcome


Competitive results with state-of-the-art classical algorithms

Beyond HEP: What’s new in QML?



Thank you
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Supplementary slides
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Higgs problem construction

Can we “rediscover” the Higgs boson with QAML?
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Higgs problem construction

Can we “rediscover” the Higgs boson with QAML?
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Higgs problem construction

Can we “rediscover” the Higgs boson with QAML?

⃗B
pT



!76

QAML-Z algorithm: Hamiltonian

Zooming: replace each binary weight �  with continuous 
weight �  governed with search breadth � .


Augmentation: generate multiple shifted classifiers �  for 
each original classifier � .


Anneal for iterations � .

si
μi(t) σ(t) = 1/2t

cil(xτ)
ci(xτ)

t = 0, 1, 2, …, T − 1
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QAML-Z algorithm: Hamiltonian

H(t) =
A

∑
l=−A [

N

∑
i=1

−Cil +
N

∑
j>i

μjl(t)Cijl σ(t)sil +
N

∑
i=1

N

∑
j>i

Cijlσ2(t)silsjl]

Each iteration � , anneal:


where we have defined:

t

Cijl =
S

∑
τ=1

cil(xτ)cjl(xτ)Cil =
S

∑
τ=1

cil(xτ)yτ
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QAML-Z algorithm: Hamiltonian

H(t) =
A

∑
l=−A [

N

∑
i=1

−Cil +
N

∑
j>i

μjl(t)Cijl σ(t)sil +
N

∑
i=1

N

∑
j>i

Cijlσ2(t)silsjl]

Each iteration � , anneal:


and update continuous weights from spins:

t

μil(t + 1) = μil(t) + silσ(t + 1)
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ROC curve

Metric of performance: area 
under receiver operating 

characteristic (ROC) curve
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ROC curve

Metric of performance: area 
under receiver operating 

characteristic (ROC) curve
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Higgs classification results

Dashes indicate test set, solid line indicates training set
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Dataset
TrackML Challenge: top quark events with 15% noise

Amrouche, Sabrina, et al. "The Tracking Machine Learning challenge: Accuracy phase." arXiv preprint arXiv:1904.06778 (2019).
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Bias towards high momentum tracks that are more important

Ising model formulation

−( cosλ(ϕabc)
rab + rbc ) sabsbc
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Bias towards high momentum tracks that are more important

Ising model formulation

−( cosλ(ϕabc)
rab + rbc ) sabsbc

High �pT

Low �pTϕ
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Tracks should point towards the beam spot at the origin

Ising model formulation

(zc −
zc − za

rc − ra ) sabsbc
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In general, tracks shouldn’t split at or merge into a single hit

Ising model formulation

a

b

c
a

b

c
sabsac + sabscb
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Use Gaussian kernel density estimation to provide a prior on 
an edge being “on” or “off” based on orientation and position

Dimension challenge

(γ − P(sab))sab
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Results
Ground state energy True solution energy
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Inconclusive results for quantum speedup

Quantum speedup?
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Inconclusive results for quantum speedup


• Classical: � 


• Quantum: preprocess at � , inconclusive 
QUBO-solving time

O(exp(# of hits))

O ((# of hits)2)

Quantum speedup?
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Inconclusive results for quantum speedup


• Classical: � 


• Quantum: preprocess at � , inconclusive 
QUBO-solving time


Could use specialized classical hardware for particle tracking 
at the trigger level: 1 PB/s reduced to 1 GB/s

O(exp(# of hits))

O ((# of hits)2)

Quantum speedup?
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Quantum speedup?

Pre-processing to construct the Ising model scales like  
�  where an event has �  hitsO(h2) h

Annealing 
Classical: O(exp(ch2)) 

Quantum: O(?)

Disjoint sub-graph 
flood-fill search 

O(h2)

Ising model construction 
O(h2)

Singlet selection 
with Gaussian KDE 

O(h2)
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Quantum speedup?

Pre-processing reduces the simulated annealing solving time 
from �  where an event has �  hitsO(exp(ch2)) h
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Quantum speedup?

The problem remains NP-hard 
after pre-processing, so SA is 
exponential in the number of 
Ising model variables


For an event divided into �  
sub-graphs with �  edges 
each, we expect solving time

K
mi

O (
K

∑
i=1

exp (cmi))
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Quantum annealing is expected to reduce the size of �  but 
leave the problem exponential


� 


Can’t measure a single time to solution, but can change 
annealing time and measure change in performance

c

O (
K

∑
i=1

exp (cmi))

Quantum speedup?
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Quantum speedup?


