
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

C Code In, D-Wave QMI Out

Mohamed Hassan,
Scott Pakin, and

Wu-chun Feng
25 September 2019

D-Wave Qubits North America
Users Conference 2019

LA-UR-19-29334

Outline

24-Sep-2019Los Alamos National Laboratory

• Goal and motivation
• Approach
• Example and results
• Conclusions

Programming a D-Wave System

24-Sep-2019Los Alamos National Laboratory

• Vendor-supported SDK: Ocean

• Provides a variety of Python-based APIs for constructing BQMs and
submitting these to a D-Wave quantum annealer for solution
– BQM = binary quadratic model (a QUBO or Ising-model Hamiltonian)

• Let’s write an Ocean program that adds two small integers and
returns their sum…

Teaching a D-Wave to Add Two Numbers

24-Sep-2019Los Alamos National Laboratory

#! /usr/bin/env python

from dwave.system import DWaveSampler,
EmbeddingComposite
from dwave.cloud import Client

client = Client.from_config()
sampler =
EmbeddingComposite(DWaveSampler(solver=clie
nt.default_solver))

Q = {("in1[0]", "in1[0]"): -3.0000,
("in1[0]", "result[0]"): -2.0000,
("in1[0]", "temp23"): 4.0000,
("in1[0]", "temp4"): 4.0000,
("in1[1]", "in1[1]"): -5.0000,
("in1[1]", "in2[1]"): 2.0000,
("in1[1]", "temp14"): 4.0000,
("in1[1]", "temp20"): -2.0000,
("in1[1]", "temp24"): 4.0000,
("in1[1]", "temp25"): 4.0000,
("in1[2]", "in1[2]"): 1.0000,

("in1[2]", "in2[2]"): 2.0000,
("in1[2]", "temp33"): 4.0000,
("in1[2]", "temp39"): 2.0000,
("in1[2]", "temp43"): -4.0000,
("in1[2]", "temp44"): -4.0000,
("in1[3]", "in1[3]"): -5.0000,
("in1[3]", "temp52"): 4.0000,
("in1[3]", "temp58"): -2.0000,
("in1[3]", "temp62"): 4.0000,
("in1[4]", "in1[4]"): -1.0000,
("in1[4]", "in2[4]"): -2.0000,
("in1[4]", "temp65"): 4.0000,
("in1[4]", "temp71"): 2.0000,

… 100 lines deleted …
("temp71", "temp65"): 4.0000,
("temp71", "temp69"): -4.0000,
("temp71", "temp71"): 2.0000}

result = sampler.sample_qubo(Q,
num_reads=1000)
print(result)

Raising the Level of Abstraction

24-Sep-2019Los Alamos National Laboratory

• This is not a natural way to express x + y
• Goal: Use a conventional, classical

programming language to express BQMs
• In this work, we consider using C as our

source programming language

Clarification: What the Goal is Not

24-Sep-2019Los Alamos National Laboratory

• The goal is not to express the BQM’s linear and quadratic coefficients
as a C data structure instead of as a Python data structure:

typedef struct {
char *q1;
char *q2;
double val;

} qubo_t

qubo_t Q[] =
{{"in1[0]", "in1[0]", -3.0000},
{"in1[0]", "result[0]", -2.0000},
{"in1[0]", "temp23", 4.0000},
{"in1[0]", "temp4", 4.0000},
{"in1[1]", "in1[1]", -5.0000},
{"in1[1]", "in2[1]", 2.0000},
{"in1[1]", "temp14", 4.0000},
{"in1[1]", "temp20", -2.0000},
{"in1[1]", "temp24", 4.0000},
{"in1[1]", "temp25", 4.0000},
{"in1[2]", "in1[2]", 1.0000},
{"in1[2]", "in2[2]", 2.0000},

{"in1[2]", "temp33", 4.0000},
{"in1[2]", "temp39", 2.0000},
{"in1[2]", "temp43", -4.0000},
{"in1[2]", "temp44", -4.0000},
{"in1[3]", "in1[3]", -5.0000},
{"in1[3]", "temp52", 4.0000},
{"in1[3]", "temp58", -2.0000},
{"in1[3]", "temp62", 4.0000},
{"in1[4]", "in1[4]", -1.0000},
{"in1[4]", "in2[4]", -2.0000},
{"in1[4]", "temp65", 4.0000},
{"in1[4]", "temp71", 2.0000},
{"in2[0]", "in2[0]", -3.0000},
{"in2[0]", "result[0]", 2.0000},
{"in2[0]", "temp23", 4.0000},
{"in2[0]", "temp4", -4.0000},
{"in2[1]", "in2[1]", -5.0000},

… etc. …

What the Goal Is

24-Sep-2019Los Alamos National Laboratory

• We want to be able to
– Write a C function such as that

shown to the right
– Compile it to a quantum machine

instruction (QMI)
– Run the QMI on a D-Wave system
– Report the results in terms of

source-program variables and data
types

int adder(int in1, int in2)
{
return in1 + in2;

}

Outline

• Goal and motivation
• Approach
• Example and results
• Conclusions

24-Sep-2019Los Alamos National Laboratory

Reining in Expectations

24-Sep-2019Los Alamos National Laboratory

• The work presented here is functional but very
much a proof of concept

• Please don’t expect to be able to recompile your
million-line C program with -march=dwave and
have it run on a quantum annealer

• Many (most) C features are not supported

èIn short, only the very simplest of C programs can be expressed

Supported Not supported
Basic for, while, and if constructs Loops with variable-length trip counts
Small integers and Booleans Characters, strings, or floating point
Fixed-length arrays (including multi-D) structs, variable-length arrays, pointers
Variable assignments, most operators Recursion

Challenges

24-Sep-2019Los Alamos National Laboratory

• A quantum annealer has no mutable state
– Can’t assign a value to variable x and later assign a different value to x

• A quantum annealer has no clock
– Can’t perform one operation at time t then another operation at time t + 1

• A quantum annealer has no explicit inputs
– All inputs must be encoded as problem coefficients

èMust bridge a huge semantic gap to convert C code to a QMI

C QMI

int adder(int in1, int in2)
{

return in1 + in2;
}

arg min
!

'
"

ℎ"𝜎" +'
"

'
#

𝐽",#𝜎"𝜎#

The C-to-D-Wave Software Stack

24-Sep-2019Los Alamos National Laboratory

VerilogC

EDIFQMASM

BQM QMI

C-to-D-Wave Yosys + ABC

edif2qmasmQMASM

SAPI

Presented at
Qubits 2016

Presented at
Qubits 2017

LLVM

The C-to-D-Wave Approach

24-Sep-2019Los Alamos National Laboratory

• Source-to-source translator (C → Verilog)
• Based on the Clang/LLVM compiler framework
• Walks the C abstract syntax tree (AST), converting

each node in turn to Verilog
• Why Verilog?

– Supports some high-level constructs (multi-bit values,
conditionals, arithmetic/relational operators)

– Compiles to a small set of simple primitives (AND, OR, NOT, etc.), suitable for
mapping to BQMs

Preparing C Code for C-to-D-Wave

24-Sep-2019Los Alamos National Laboratory

• C-to-D-Wave expects C code to be written in a slightly stylized form
• Function parameters are considered program inputs

– That is, there is no main() function with argc/argv arguments
• The return statement defines the output
• int variables and constants are 5 bits wide

– Attempts to strike a balance between usefulness and qubit consumption
– Arbitrary; can be changed

• bool variables and constants are 1 bit wide
– Reduces wasted qubits

• The register keyword indicates the need for a Verilog register
– Loop induction variables
– Variable reassignments (e.g., temp in “temp = temp + val”)

Is It Worth It?

24-Sep-2019Los Alamos National Laboratory

• For conventional code execution, no
– A modern CPU can perform a lot of work in the time it takes to send a QMI

to a D-Wave system and get back the results
• However,

– The code generated by C-to-D-Wave is a relation of inputs and outputs, not
a function from inputs to outputs

– This means that we can not only supply inputs and receive outputs, but we
can also supply outputs and receive the corresponding inputs

• This property simplifies the expression of challenging computational
problems
– Declarative approach: Describe what the solution looks like rather than how

to produce the solution

Outline

• Goal and motivation
• Approach
• Example and results
• Conclusions

24-Sep-2019Los Alamos National Laboratory

A Traveling-Salesman Problem

24-Sep-2019Los Alamos National Laboratory

• Decision-problem variant
– Given a weighted graph G and an integer t, is there a Hamiltonian path in G

that costs at most t?
– In answering the question, return the Hamiltonian path

• Example graph with weights
– Inner weights are for clockwise paths
– Outer weights are for counterclockwise paths

A

B

CS
1 1

1
1

1

3

2

TSP Written in C

24-Sep-2019Los Alamos National Laboratory

bool TSP(int a, int b, int c, int tspdist) {
bool valid;
int arr_s[4];
int arr_a[4];
int arr_b[4];
int arr_c[4];

// starting city S costs
arr_s[0] = 31;
arr_s[1] = 31;
arr_s[2] = 31;
arr_s[3] = 1;

// City A costs
arr_a[0] = 31;
arr_a[1] = 31;
arr_a[2] = 1;
arr_a[3] = 1;

// City B costs
arr_b[0] = 31;
arr_b[1] = 1;

arr_b[2] = 31;
arr_b[3] = 2;

// City C costs
arr_c[0] = 1;
arr_c[1] = 3;
arr_c[2] = 1;
arr_c[3] = 31;

int totcost;
totcost = arr_s[3] + arr_a[a] + arr_b[b] +

arr_c[c];

if (totcost < tspdist && a > 0 && b > 0 &&
c > 0 && a < 4 && b < 4 && c < 4 &&

a != b && a != c && c != b)
valid = 1;

else
valid = 0;

return valid;
}

One Productivity Metric: Source Lines of Code (SLOC)

24-Sep-2019Los Alamos National Laboratory

VerilogC

QMASM

BQM QMI

C-to-D-Wave Yosys

edif2qmasmQMASM

SAPI

31 45

328

449 1459

684
EDIF

SLOC Counts for Other Test Cases

24-Sep-2019Los Alamos National Laboratory

Another Metric: Qubit Count

24-Sep-2019Los Alamos National Laboratory

• Even small bits of code consume a large fraction of a Chimera graph
• Looking forward to testing this against Pegasus to see how much

larger these problems can scale

Outline

• Goal and motivation
• Approach
• Example and results
• Conclusions

24-Sep-2019Los Alamos National Laboratory

Conclusions

24-Sep-2019Los Alamos National Laboratory

• It is indeed possible to compile C code to a
D-Wave QMI
– Many limitations imposed due to the need to work

around the large semantic gap
– Technically, these could be bridged given a

sufficient (→ extremely large) number of qubits
• Benefits of programming a D-Wave in C

– Programmer-productivity gain versus manual
construction of a QMI

– Enables declarative solution to complex problems Samuel Johnson, 1709–1784

Sir, [compiling C to a QMI] is like a dog's
walking on his hind legs. It is not done well;
but you are surprised to find it done at all.

For More Information…

24-Sep-2019Los Alamos National Laboratory

• Mohamed W. Hassan, Scott Pakin, and Wu-chun Feng. “C to
D-Wave: A High-level C Compilation Framework for Quantum
Annealers”. In Proceedings of the 23rd IEEE High Performance
Extreme Computing Conference (HPEC 2019). 24–26 September
2019, Waltham, Massachusetts, USA.

• https://github.com/lanl/c2dwave
– BSD-3 Clear open-source license
– Tested against Clang/LLVM 7.0
–Caveat: Code is at best alpha quality and unlikely ever to be actively

maintained

https://github.com/lanl/c2dwave

