C Code In, D-Wave QMI Out

D-Wave Qubits North America
Users Conference 2019

Mohamed Hassan,
ﬁ Scott Pakin, and
, *’j Wu-chun Feng
25 September 2019
» Los Alamos

NATIONAL LABORATORY
EST.1943

\A
A >4
lear Security Administration
t of Energy’s NNSA

National Nuc
the U.S. Departmen

Managed by Triad National Security, LLC f
LA-UR-19-29334

« Goal and motivation
« Approach

« Example and results
« Conclusions

Los Alamos National Laboratory 24-Sep-2019

Programming a D-Wave System

* Vendor-supported SDK: Ocean

DR\ ee

D-Wave's Ocean Software

Ocean software is a suite of tools D-Wave Systems provides on the D-Wave GitHub repository for solving hard
problems with quantum computers.

 Provides a variety of Python-based APIs for constructing BQMs and
submitting these to a D-Wave quantum annealer for solution

—BQM = binary quadratic model (a QUBO or Ising-model Hamiltonian)

* Let’s write an Ocean program that adds two small integers and
returns their sum...

Los Alamos National Laboratory 24-Sep-2019

Teaching a D-Wave to Add Two Numbers

#! /usr/bin/env python ("inlf[2]1", "in2[2]") 2.0000,
("inl[2]", "temp33") 4.0000,
from dwave.system import DWaveSampler, ("inl[2]", "temp39") 2.0000,
EmbeddingComposite ("inlg[21", "temp43") -4.0000,
from dwave.cloud import Client ("inlg[21", "temp44d") -4.0000),
("inl[3]", "inl[3]"): -5.0000,
client = Client.from config() ("inl[31", "tempb52") : 4.0000,
sampler = ("inl[31", "temp58") -2.0000,
EmbeddingComposite (DWaveSampler (solver=clie ("inl1[3]", "temp62") 4.0000,
nt.default solver)) ("inl (41", "inl[4]") -1.0000),
("inl[4]", "in2[4]1") -2.0000,
Q = {("inl[O]1", "inl[O0]") : -3.0000, ("inl[4]", "temp65") 4.0000,
("inl[O]", "result[0]"): -2.0000, ("inl[4]", "temp71") : 2.0000,
("inl([O]", "temp23") : 4.0000, ... 100 lines deleted ...
("inlJ[O]", "temp4d") : 4.0000, ("temp71", "temp65") : 4.0000,
("inl[1]", "inl[1]") -5.0000, ("temp71", "temp69") : -4.0000,
("inl[1]", "in2[1]") 2.0000, ("temp71", "temp71") : 2.0000}
("inlg[211", "templd"™) 4.0000,
("inl[1]"™, "temp20™) : -2.0000, result = sampler.sample gqubo (Q,
("inlg[21]1", "temp24") : 4.0000, num_ reads=1000)
("inlg[21]1", "temp25™) 4.0000, print (result)
("inlf[2]", "inl[2]") 1.0000,

Los Alamos National Laboratory 24-Sep-2019

Raising the Level of Abstraction

 This is not a natural way to express x + y

 Goal: Use a conventional, classical
programming language to express BQMs THE

* In this work, we consider using C as our
source programming language

SECOND EDITION

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERES

Los Alamos National Laboratory 24-Sep-2019

Clarification: What the Goal is Not

* The goal is not to express the BQM'’s linear and quadratic coefficients
as a C data structure instead of as a Python data structure:

char *gl;
char *g2;

} qubo t

typedef struct ({

double wval;

14

"inl[O]",
"result[O0]",
"temp23",
"temp4d",
"inl([1]",
"in2[1]",
"templd",
"temp20",
"temp24",
"temp25",
"inl([2]",
"in2[2]",

28

=2
4

4
=2

N =D

00001},

.00001},
.00001,
4.
=5 c
2 c

0000},
00001},
00001},

.00001%,
.00001%,
.00001},
.00001%,
.00001%,
.00001%,

{"inlf[2]"
{"inl[2]
{"inl[2]
{"inl[2]
{"inl[3]
{"inl[3]
{"inl[3]
{"inl [3]
{"inlf[4]"
[4]
[4]
[4]
[0]
[0]
[0]
[0]
[1]

"w
"w
"w
"w
"w
"

"

{"inl "
{"inl
{"inl
{"in2
{"in2
{"in2
{"in2
{"in2

"w

"w

"w

"w

"w

"w

"w

14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14

"temp33", 4.,
"temp39", 2.
"temp43", -4,
"temp44", -4.
"inl[3]", -5
"tempb2", 4.,
"tempb58", =2 5
"temp62", 4.,
"inl([4]", =1
"in2[4]", =2
"temp65", 4.,
"temp71", 2.
"in2[0]", =3
"result[O0]", 2.
"temp23", 4
"temp4d", -4.
"in2([1]", B -
.. ete. ...

0000},
0000},
0000},
0000},

.0000},

0000},
0000},
0000},
0000},

.0000},

0000},
0000},
0000},
0000},

.0000},

0000},
0000},

Los Alamos National Laboratory 24-Sep-2019

What the Goal Is

* We want to be able to int adder (int ind, int in2)
— Write a C function such as that {
shown to the right return inl + in2;
— Compile it to a quantum machine }

instruction (QMI)
— Run the QMI on a D-Wave system

— Report the results in terms of
source-program variables and data
types

Los Alamos National Laboratory 24-Sep-2019

* Approach

Los Alamos National Laboratory 24-Sep-2019

Reining in Expectations

* The work presented here is functional but very
much a proof of concept

* Please don’t expect to be able to recompile your
million-line C program with -march=dwave and

have it run on a quantum annealer
« Many (most) C features are not supported

Supported Not supported
Basic for, while, and if constructs Loops with variable-length trip counts
Small integers and Booleans Characters, strings, or floating point

Fixed-length arrays (including multi-D) structs, variable-length arrays, pointers

Variable assignments, most operators Recursion

>In short, only the very simplest of C programs can be expressed

Los Alamos National Laboratory 24-Sep-2019

Challenges

* A quantum annealer has no mutable state
— Can’t assign a value to variable x and later assign a different value to x

* A quantum annealer has no clock
— Can’t perform one operation at time f then another operation at time ¢ + 1

* A quantum annealer has no explicit inputs
— All inputs must be encoded as problem coefficients

>Must bridge a huge semantic gap to convert C code to a QMI

arg min (Z hiO'i ar Z Z]i,]'o-io-j>
a ; : :
i i

int adder (int inl, int in2)

{

return inl + 1in2;

}

Los Alamos National Laboratory 24-Sep-2019

The C-to-D-Wave Software Stack

@—P C-to-D-Wave Yosys + ABC

Presented at Presented at
Qubits 2016 Qubits 2017

Los Alamos National Laboratory 24-Sep-2019

« Source-to-source translator (C — Verilog)
« Based on the Clang/LLVM compiler framework

« Walks the C abstract syntax tree (AST), converting
each node in turn to Verilog
« Why Verilog?
— Supports some high-level constructs (multi-bit values,
conditionals, arithmetic/relational operators)

— Compiles to a small set of simple primitives (AND, OR, NOT, etc.), suitable for
mapping to BQMs

The C-to-D-Wave Approach
; |

Los Alamos National Laboratory 24-Sep-2019

Preparing C Code for C-to-D-Wave

» C-to-D-Wave expects C code to be written in a slightly stylized form

* Function parameters are considered program inputs
—That is, there is no main () function with argc/argv arguments

* The return statement defines the output

* int variables and constants are 5 bits wide
— Attempts to strike a balance between usefulness and qubit consumption
— Arbitrary; can be changed

* bool variables and constants are 1 bit wide
— Reduces wasted qubits

* The register keyword indicates the need for a Verilog register

— Loop induction variables
— Variable reassignments (e.g., temp in “temp = temp + val’)

Los Alamos National Laboratory 24-Sep-2019

Is It Worth It?

* For conventional code execution, no

— A modern CPU can perform a /ot of work in the time it takes to send a QMI
to a D-Wave system and get back the results

 However,

— The code generated by C-to-D-Wave is a relation of inputs and outputs, not
a function from inputs to outputs

— This means that we can not only supply inputs and receive outputs, but we
can also supply outputs and receive the corresponding inputs

 This property simplifies the expression of challenging computational
problems

— Declarative approach: Describe what the solution looks like rather than how
to produce the solution

Los Alamos National Laboratory 24-Sep-2019

« Example and results

Los Alamos National Laboratory 24-Sep-2019

A Traveling-Salesman Problem

 Decision-problem variant

— Given a weighted graph G and an integer t, is there a Hamiltonian path in G
that costs at most t?

— In answering the question, return the Hamiltonian path

« Example graph with weights
— Inner weights are for clockwise paths
— Quter weights are for counterclockwise paths

Los Alamos National Laboratory 24-Sep-2019

TSP Written in C

bool TSP (int a, int b, int ¢, int tspdist) { arr b[2] = 31;
bool valid; arr b[3] = 2;
int arr s([4];
int arr al[4]; // City C costs
int arr bf[4]; arr c[0] = 1;
int arr cf[4]; arr c[1l] = 3;
arr c[2] = 1;
// starting city S costs arr c[3] = 31;
arr s[0] = 31;
arr s[l] = 31; int totcost;
arr s[2] = 31; totcost = arr s[3] + arr ala] + arr b[b] +
arr s3] = 1; arr clc];
// City A costs if (totcost < tspdist && a > 0 && b > 0 &&
arr a[0] = 31; c >0 && a <4 && b<4 && c < 4 &
arr a[l] = 31; a l=Db && a l=c && c != Db)
arr afl[2] = 1; valid = 1;
arr a[3] = 1; else
valid = 0;
// City B costs return valid;
arr b[0] = 31; }
arr b[l] = 1;

Los Alamos National Laboratory 24-Sep-2019

One Productivity Metric: Source Lines of Code (SLOC)

@—P C-to-D-Wave Yosys
QMASM edif2gmasm @

@ SAPI

Los Alamos National Laboratory 24-Sep-2019

SLOC Counts for Other Test Cases

3000

2608

2500

2000

1644

(&)
Q 1500
w

931
991

1000

762
750

379
433
487

500

294
194
201

| 33
I 54
-

123

55
80

o N on
i M~ LN

[b | |

36
50

o
<

traveling Subset-sum Mul/factoring Max-cut Map-coloring
sales-man

B C-code mVerilog ™WEDIF QMASM ® Hamiltonian (logical)

Los Alamos National Laboratory 24-Sep-2019

Another Metric: Qubit Count

900
800
700

w 600

S
o 500
o
5 400
. |

9 300 |
200
100

776
556

311

\o]
=
L o)
— =
[I——"

traveling Subset-sum Mul/factoring Max-cut
sales-man

o
M-

M # Logical qubits m # Physical qubits
« Even small bits of code consume a large fraction of a Chimera graph

 Looking forward to testing this against Pegasus to see how much
larger these problems can scale

Los Alamos National Laboratory 24-Sep-2019

e Conclusions

Los Alamos National Laboratory 24-Sep-2019

Conclusions

Sir, [compiling C fo a QMI] is like a dog's
walking on his hind legs. It is not done well;
but you are surprised to find it done at all.

* [t is indeed possible to compile C code to a
D-Wave QMI

— Many limitations imposed due to the need to work
around the large semantic gap

— Technically, these could be bridged given a
sufficient (— extremely large) number of qubits
Benefits of programming a D-Wave in C

— Programmer-productivity gain versus manual
construction of a QMI

_ Enables declarative solution to complex problems ~ Samuel Johnson, 1709-1784

Los Alamos National Laboratory 24-Sep-2019

For More Information...

 Mohamed W. Hassan, Scott Pakin, and Wu-chun Feng. “C to
D-Wave: A High-level C Compilation Framework for Quantum
Annealers”. In Proceedings of the 23rd IEEE High Performance
Extreme Computing Conference (HPEC 2019). 24-26 September
2019, Waltham, Massachusetts, USA.

e hitps://github.com/lanl/c2dwave

—BSD-3 Clear open-source license

— Tested against Clang/LLVM 7.0
— Caveat: Code is at best alpha quality and unlikely ever to be actively
maintained

Los Alamos National Laboratory 24-Sep-2019

https://github.com/lanl/c2dwave

