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Overview 

Problem 

Develop a method to optimize control schedules for general adiabatic quantum computation (AQC) algorithms that 

is 

• Scalable/Efficient:  Convergence rates that do not depend on system size 

• Practical: does not require knowledge of energy spectrum or computational solution 

• Robust: robust to system uncertainty, e.g., noise 
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Motivation 

• Optimized control can facilitate computational speedup 

- Time-optimal controls for Grover’s search algorithm (Rolad, Cerf PRA 2002, Rezakhani et al. PRL 2009) 

- Boundary cancellation methods (Rezakhani et. al. PRA 2011) 

• Many techniques are not practical  

- Require knowledge of the instantaneous energy spectrum (Zeng et al JPA 2016) 

- Require knowledge of the computational solution (Brif at. Al NJP 2014) 

- Not robust to system uncertainty (Roland, Cerf PRA 2002, Rezakhani et al. PRL 2009) 
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Quantum Control 

Objective 

Perform particular quantum operation with high fidelity, potentially while simultaneously 

mitigating the effects of unwanted environment interactions 
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Open Loop Control Closed Loop Control 

System System 

Offline Optimized 

control path 
Optimized state w.r.t 

some observable 

• Relies on system model 

• May/may not be robust to uncertainty 

• Example: optimal control, robust control 

Feedback (intermediate or 

terminal) 

Active or Iteratively 

Optimized control 

path 

Optimized state w.r.t 

some observable 

• Inherently robust to system uncertainty 

• Requires intermediate or terminal 

measurement of an observable 



Quantum Control for Adiabatic Quantum Computation 

Local adiabatic control (LAC) 

• Relies on “instantaneous adiabatic theorem” 

- satisfy the adiabatic condition at each instance in time 

• Minimizes the time needed to reach the adiabatic regime 

based on the rate of change of the evolution 

 

Boundary cancellation control (BCC) 

• Relies on “final time adiabatic theorem” 

- Minimizes error in the adiabatic approximation 

- Polynomial error improvement of LAC by setting the 

first 𝑛 − 1 derivatives of the Hamiltonian to zero at the 

boundaries 
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Closed Loop Control Protocol 

Closed Loop Optimized Adiabatic Quantum Control (CLOAQC) 

In situ control protocol designed to minimize system energy via Simultaneous Perturbation Stochastic 

Approximation (SPSA) optimization (Spall 1992) 
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Adiabaticity Constraint 

Req. Experiments: 2𝐾𝑀 



CLOAQC: Numerical Study 
Grover’s Search Problem 
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CLOAQC: Numerical Study 
MAX 2-SAT 
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Problem: Determine maximum number of 

satisfying assignments for a Boolean formula 

𝐻 𝑡 = 𝐴1 𝑡  𝜎𝑖
𝑋

𝑖

+ 𝐴2 𝑡  𝜎𝑖
𝑋𝜎𝑗

𝑋

𝑖≠𝑗

+ 𝐵1 𝑡  ℎ𝑖𝜎𝑖
𝑍

𝑖

+ 𝐵2 𝑡  𝐽𝑖𝑗𝜎𝑖
𝑍𝜎𝑗

𝑍

𝑖≠𝑗

 

𝐹[{𝑥𝑖}𝑖=1
𝑁 ] = (𝑥3 ∨ 𝑥1) ∧ (¬𝑥5 ∨ 𝑥2) ∧ ⋯∧ (𝑥4 ∨ ¬𝑥3)  

𝐶1 𝐶2 𝐶𝑀 

𝐻𝑃 =  𝐻𝐶𝑘

𝑀

𝑘=1

, 𝐻𝐶𝑘 =
1 − 𝑣𝑥𝑖

𝑘𝜎𝑥𝑖
𝑍

2

1 − 𝑣𝑥𝑗
𝑘 𝜎𝑥𝑗

𝑍

2
 

AQC Hamiltonian 

Increasing control DOF leads to 

improvements in computational accuracy 

and enhancements in minimum gap 



CLOAQC: Numerical Study 

Grover with unitary control errors 

Robustness to Noise 
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𝐻𝑎𝑑
′ 𝑠 = 𝐻𝑎𝑑 𝑠 + 𝐻𝐸(𝑠)  

𝐻𝑎𝑑 𝑠 = 𝐴 𝑠 𝐼 − + + + B 𝑠 𝐼 − |𝑚⟩⟨𝑚|  

𝐻𝐸 𝑠 = Γ 𝑠  𝑚 𝑖 ⋅ 𝜎 𝑖
𝑖

 

a) 

b) 

c) 

Γ 𝑠 = 𝐶𝑠 

Γ 𝑠 = 𝐶 sin (𝜋𝑠) 

Γ 𝑠 =
1

2
sin(𝐶𝜋𝑠) 

Error Scenarios 

CLOAQC exhibits robustness to 

sufficiently small and slow-oscillating 

unitary control errors 



Control Capabilities on the D-Wave QPU 

2000Q System 

• Allows for some control over annealing path 

• Path must be monotonic 

• New features 

- Pausing 

- Quenching 

• Permits experimental testing of CLOAQC! 

19 September 2018 14 



Content Addressable Memory Problem 

Traditional Memory 

• Input is address location of the desired content 

• Output is the content of the address 
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Content Addressable Memory (CAM) 

• Input is content of the stored memory 

• Output is the location of the desired content 
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Quantum CAM 

Problem Design 

Cast CAM problem as an adiabatic quantum optimization problem 
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𝐻 𝑡, 𝜃 = 𝐴 𝑡 𝐻𝑋 + 𝐵 𝑡 𝐻𝜃 

𝐻𝑋 = − 𝜎𝑖
𝑋

𝑛

𝑖

 

𝐻𝜃 = − 𝑤𝑖𝑗𝜎𝑖
𝑍𝜎𝑗

𝑍

𝑛

𝑖,𝑗

− 𝜃𝑖𝑣𝑖
0
𝜎𝑖
𝑍

𝑛

𝑖

 

𝑊𝐵 =
1

𝑛
𝐾𝑇𝑉 

𝐾 = 𝑘 1 , 𝑘 2 , … , 𝑘 𝑚 𝑇
 𝑉 = 𝑣 1 , 𝑣 2 , … , 𝑣 𝑚 𝑇

 

𝑊 =
0 𝑊𝐵

𝑊𝐵
𝑇 0

 

Keys: Values: 

Hamiltonian Description Hebbs Learning Rule 

Maximum Classical Learning Capacity: 𝐶 𝑛 =
𝑛

2
log (𝑛) 

H. Seddiqi, T. Humble Frontiers in Phys. 2014 

Santa et al. PRA 20017 

Schrock et al. Entropy 2017 



QCAM Preliminary Experimental Results 

Problem Description 
• 𝑛 = 16 logical qubits 

• # encoded memories: 𝑚 = 0.2𝑛 
• 1 𝜇𝑠 annealing time 
• 𝑁 =1000 annealing runs 

• 20 realizations of CLOAQC 
• 500 iterations of CLOAQC 

CLOAQC Convergence Scaling 
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Convergence Scaling 

Convergence Rate: 𝑂(𝑘𝛽) 

𝜽 𝜷 

0.1 -0.0364 

0.3 -0.1182 

0.5 -0.0808 

0.7 -0.0766 

0.9 -0.0768 

1.0 -0.0752 

Single Instance Convergence Scaling 

𝐹 =
1

𝑁
 𝛿𝑐𝑖,𝑛

𝑁

𝑖
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QCAM Preliminary Experimental Results 
Fidelity vs. Bias 
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QCAM Preliminary Experimental Results 
Fidelity vs. Problem Size 
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𝐹 =
1

𝑁
 𝛿𝑐𝑖,𝑛

𝑁

𝑖

 

Fidelity 

Problem Description 

• Number of logical qubits 𝑛 = 8,16,32,64 

• Bias 𝜃 = 0.1 

• # stored memories: 𝑚 = 0.2𝑛 

• 1 𝜇𝑠 annealing time 

• 𝑁 =1000 annealing runs 

• 20 realizations of CLOAQC 

• 500 iterations of CLOAQC 

Median Infidelity vs. System Size 



Summary 

Conclusions 

• CLOAQC can be used to improve computational accuracy of the D-Wave QPU 

• Encouraging preliminary results suggest QCAM recall accuracy can be improved by 

CLOAQC 

 

Future Work 

• Explore benefits of control for QCAM capacity 

• Optimizing control with respect to capacity 

• Methods for accelerating CLOAQC convergence 
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