Challenging Collaborations with T-QARD

Graduate School of Information Sciences, Tohoku University Masayuki Ohzeki

Our update

- T-QARD: Tohoku university Quantum Annealing Research and Development
 - Starts from October 2017, make education and active research networks of QA
 - From this April 2019, start more prominent collaborations with many companies
- > Jij Inc. is established as an achievement of JST-START project
 - CEO: Yu Yamashiro and CTO: Koji Nishimura
 - Advisors: Masayuki Ohzeki and Masamichi J. Miyama
- D-Wave 2000Q and Pegasus will be (we wish) installed
 - From this April 2019, we sign a contract with D-Wave Systems
 - We establish a consortium (head: Prof. H. Nishimori) for setting the D-Wave machine in Japan
 - Various companies joined this consortium already and gather more colleagues

- T-QARD: Tohoku university Quantum Annealing Research and Development
 - Quantum annealing for deep neural network (QML-BQT, Spain)
 - Tsunami evacuation (Qubits Europe in Munich)
 - Quantum Clustering and many others (AQC2018 in Mountain View)
 - Automated Guided Vehicles (Qubits North America in Noxville)
- Our collaboration"s" with T-QARD
 - Forecasting stock attractiveness by Masaya Abe (Nomura Asset Management)
 - Graph partition in quantum simulation by Takako Mashiko (Kyocera)
 - Bus Scheduling Problem by Naoki Maruyama (Tohoku · Hachinohe high school)
 - Black-box optimization by Ami Koshikawa (Tohoku · DENSO)
 - Calibration for Auto-Transmission Shift Control System by Miyama (Tohoku · Aisin)

2019.03.27 New method for solving constraints in quantum annealer

forecasting stock relative attractiveness Masaya Abe Nomura Asset Management Co. Ltd. T-QARD collaboration with Nomura Asset Management Co. Ltd.

NO/MURA

A sampling technique of the D-Wave to implement Restricted Boltzmann Machine for forecasting stock relative attractiveness

Masaya Abe¹, Masayuki Ohzeki^{2,3}, Masamichi Miyama²

¹ Innovation Lab, Nomura Asset Management Co., Ltd. ² Graduate School of Information Sciences, Tohoku University ³ Institute of Innovative Research, Tokyo Institute of Technology

Motivation

NOMURA

Cross-sectional approach via Restricted Boltzmann Machine

Our Model: Restricted Boltzmann Machine

Restricted Boltzmann Machine

Our Model: Input data sets

NO/MURA

Input : Past data sets

- {Features of each stock at time T , Relative attractiveness of each stock at time T+1^{*}}
 *Only used for training
 - Preprocessing for cross-sectional data: Converting each feature and stock returns to {0, 1} by cross-sectional median within stock universe at each time point
- ✓ # of features : 10
- ✓ Stock universe : TOPIX500 (approximately 500 stocks)

No.	Feature (Factor)					
1	Book-to-market ratio					
2	Earnings-to-price ratio					
3	Dividend yield					
4	Return on equity					
5	Return on asset					
6	Current ratio					
7	EPS Revision(1 month)					
8	EPS Revision(3 months)					
9	Past stock return(1 month)					
10	Past stock return(12-1 months)					

Tentative Result: Convergence in the learning step **NOMURA**

Gradient Ratio

 Past data sets: 120 months
 (Dec 2008 – Nov 2018)

Tentative Result: Back test for Single Period

- Performance from Jan 2019 to Feb 2019 (Fixed model)
 - Rank Correlation: +0.14 (Spearman)
 - Performance(avg): +1.35%
 (Long Short: Quintile)

NO/MURA

Future

Multiple period predictions: Expand output variable from one time point (T+1) to multiple time points (e.g. T+1, T+2, T+3)

Graph partitioning Takako Mashiko Kyocera T-QARD collaboration with Kyocera

Graph partitioning based on pair interaction energy using quantum annealing on the D-wave system KYOCERA Corporation MAR. 27th, 2019

1. Intro. | What Fragment Molecular Orbital method ?

Fragment Molecular Orbital (FMO) method^[1]

How to divide the fragments is important, but it relies on experience.

[1] K. Kitaura, E. Ikeo, T. Asada, T. Nakano, M. Uebayashi, Chem. Phys. Lett., 1999, 313, 701

2. Purpose

Replacing the fragment partitioning of FMO method with a graph partitioning problem, realizing automated fragmentation.

The fragmentation of water clusters was calculated by D-wave, and compared with the results of METIS.

3. Computational detail | flow chart of analysis

Flow chart

- 1. Prepare for the model of the molecular structure/assembles
- 2. Perform FMO2 as one molecule one fragment
- 3. Get the pair interaction energy (PIE)
- 4. Perform the graph partitioning considering the PIE as edge weight
- 5. Evaluate (energy difference between FMO2 and QM without fragment)

Step 1, 2, and 3

Software	:GAMESS 2018
Method	:HF
Basis set	:6-31G*
Solvation model	:PCM (water)

Step 4. Perform the graph partitioning

Considering the minimization of the Ising Hamiltonian.

$$H^{1st} = \sum_{i < j} J_{ij} \sigma_i \sigma_j$$
 where $\sigma_i = \{-1, 1\}$

Step 5. Evaluate (FMO2 and QM without fragment)

Software	:GAMESS 2018
Method	:HF-D3, MP2, B3LYP-D3, wB97XD
Basis set	:6-31G*
Solvation model	:gas phase, PCM (water)

4. Results | method dependency of 8 cut problem

Water molecules are colored by group (green, blue, red, yellow, orange, black, gray, khaki).

For the MLRB and K-way methods, the blue group is spread wide apart. On the other hand, the results for D-wave shows that molecules in each group are kept close together. **The partitioning using D-wave seems most reasonable.**

4. Results | Energy difference between FMO, E^{FMO2} , and QM without fragmentation, E^{AII}

6

For both 4 cut and 8 cut problems,

- ✓ The best graph cutting method was D-wave.
- ✓ D-wave energy difference results are half the value of the other methods.

D-wave results proved to be the best choice for automated fragmentation.

5. Conclusion

Replacing the fragment partitioning of FMO method with a graph partitioning problem, realizing automated fragmentation.

The fragmentation of water clusters is calculated by D-wave, and compared with the results of METIS.

When we performed graph partitioning considering the pair interaction energy as edge weight, D-wave results proved to be the best choice for the fragmentation.

Bus Scheduling Problem Naoki Maruyama Tohoku University T-QARD collaboration with Hachinohe high school

Bus Scheduling Problem

- We addressed optimization of bus schedule using D-Wave machine with Hachinohe high school students.
- In Hachinohe, the buses they often take are crowded every morning. So we have wanted to reduce the congestion of buses.
- The purpose of this problem is to efficiently carry passengers and reduce the total number of buses.
- We evaluate the bus transportation by average number of passengers and EWT(Excess Waiting Time).

Problem setting

• For simplicity, all buses proceed without delay after leaving the first bus stop.

(Source: http://8-bus.com/ohashi-loop.html)

2019.03.27 Naoki Maruyama (Tohoku University): Optimization of bus schedule

Bus Scheduling Problem

Variables

- C_t : the target number of passengers (uniformly $C_t = C = 21$)
- $l_{t,s}$: the number of passengers getting on the bus departing at each stop S at t
- $u_{t,s}$: the number of passengers getting off at t each stop S
- We used the real data on the passengers in Sabae city, Fukui prefecture. (Source: https://fukuno.jig.jp/app/bus/busgraph.html)

2019.03.27 Naoki Maruyama (Tohoku University): Optimization of bus schedule

QUBO formulations

Constrained formulation

• $\sum_{t=1}^{T} q_t$: to reduce the number of operating buses

•
$$\frac{1}{S} \sum_{s=1}^{S} \sum_{s'=1}^{s} (l_{t,s'} - u_{t,s'}) q_t = C$$
: to maintain average number of passengers
at approximately *C* for each bus departing *t* at
• $\sum_{u=1}^{N} (1 - q_{t-u}) < N$: not to permit the absence of bus transportation from $t - 1$ to $t - N$
in order to reduce EWT (*N*: the capable waiting time)

Unconstrained (QUBO) formulation

$$E(\mathbf{q}) = \sum_{t=1}^{T} q_t + \lambda_1 \sum_{t=1}^{T} \left(\frac{1}{S} \sum_{s=1}^{S} \sum_{s'=1}^{s} \left(l_{t,s'} - u_{t,s'} \right) q_t - C \right)^2 + \lambda_2 \sum_{t=1}^{T} q_t \sum_{n=1}^{N} \left(1 - q_{t-n} \right)$$

Result 1: vs equal intervals and real schedule

- The optimal solution is more efficient of each bus operation than the real schedule and the case considering equal intervals.
- The variance of the optimal solution is slightly larger than that of the others.

Notes

- We set $\lambda_1 = 0.5$, $\lambda_2 = 1.2$.
- We used D-Wave 2000Q and set annealing time: 20 micro sec and num_reads: 1000.
- We selected the solutions which satisfy the hard constraint and include the same number of buses as real schedule.

2019.03.27 Naoki Maruyama (Tohoku University): Optimization of bus schedule

Result 2: optimization for various EWT

- The larger the capable waiting time N is, The more the number of solutions which satisfy the hard constraint is.
- However, those average numbers of passengers gradually decrease.

Notes

- We set $\lambda_1=0.5$, $\lambda_2=1.2$.
- We used D-Wave 2000Q and set annealing time: 20 micro sec and num_reads: 1000.
- We selected the solutions which satisfy the hard constraint.

2019.03.27 Naoki Maruyama (Tohoku University): Optimization of bus schedule

Black-box optimization Ami Koshikawa Tohoku University T-QARD collaboration with DENSO

BLACK-BOX OPTIMIZATION [arXiv:1806.08838]

• Bayesian approach to combinatorial global optimization

$$\overrightarrow{x_i} \xrightarrow{f(\overrightarrow{x})} f(\overrightarrow{x}) \xrightarrow{} E_i \quad \text{Find a global optimizer of } f(\overrightarrow{x})$$

$$\overrightarrow{x} \in \{0,1\}^N \quad \Box_{\text{A large evaluation cost (e.g. experiment)}}$$

Bayesian Optimization

$$\{\overrightarrow{x_i}, E_i\}_{i=0, 1, \dots}$$
: Data
 $f_{\alpha}(\overrightarrow{x}) = \overrightarrow{x}^{\top} \alpha \overrightarrow{x}$: Acquisition function w/ a horseshoe prior over α

Our work: D-Wave 2000Q, Fujitsu Digital Annealer →Potential to solve any combinatorial optimization problems

RESULTS (Ferromagnetic Interaction)

- N: 10 spins, # of initial data: 10, $H = -\sum_{i,i,k} J_{ijk}\sigma_i\sigma_j\sigma_k \sum_i h_i\sigma_i$, $\sigma_i = \{-1, 1\}$
- The convergence is observed even if the blackbox has 3 body interaction!

Calibration for Auto-Transmission Shift Control System Masamichi J. Miyama Tohoku University T-QARD collaboration with AISIN AW

Q-BOOST BASED CALIBRATION TEST FOR AT SHIFT CONTROL SYSTEM

AISIN AW Co., LTD., Tohoku University* Kiyohisa Tomita, Yasuhiko Kobayashi, <u>Masamichi J. Miyama</u>*

Our Motivation: Calibration test for AT shift control system

Only well-trained calibration engineer can judge whether the settings is OK or NG. It takes **several years** to train such an expert engineer!

Binary classifier that can decide OK or NG from a given data.

Previous study by AISIN-AW (DL)

Time series measurement data of Slip speed Lock-up clutch Engine torque -14 channels Engine speed 14 signals Slip speed Input speed of automatic transmission 1x400 1st layer Convolution + Pooling pixels Engine torque 2nd layer Convolution + Pooling Normalization Engine speed 3rd layer Convolution + Pooling of data $x - \mu$ 4th layer Convolution + Pooling σ 5th layer Convolution + Pooling Input speed of automatic transmission where μ : Mean 6th layer Convolution 0.00 0.50 1.00 1.50 2.00 sec σ : Standard Time deviation 7th layer Fully connected Dataset Logistic sigmoid 4,429 → Augmented training data 48,719 data Not good **OK** Prepared 5,536 data 1,107 test data

Result of 5-fold cross validation

	Accuracy
Test 1	89.4%
Test 2	88.7%
Test 3	90.4%
Test 4	89.9%
Test 5	89.2%
Average	89.5%

Q-Boost: QUBO formulation

	Teache	Learne	Learne	Learne		Binary variables: $q_i \in \{0 \text{ (NOT USE)}, 1 \text{ (USE)}\}$
	r	r1	r2	r3		
Data1	0K=1	OK	NG	OK		for the <i>i</i> -th weak leaner.
Data2	NG=0	OK	OK	NG		QUBO Formulation: Selecting K from M learners.
Data3	NG=0	ОК	NG	NG		$\mathcal{H}(\boldsymbol{q}) = \sum_{i=1}^{N} \sum_{j=1}^{M} (T_j - D_{ij})^2 q_i + \lambda \left(\sum_{i=1}^{N} q_i - K\right)^2$
Data4	0K=1	NG	OK	OK		$\overline{i=1} \ \overline{j=1}$
:	:	:	:	:		Decreasing the error Selecting K learners
	Teac	ner	Weak	leaners	5	
	0	к				selection
NG						Selec
NG		G	NOT	_		NOT
			NOT USE	USE		NOT USE USE

Main Results: Comparison between Q-Boost (0.1 million steps x 20 learners) and previous study, DL (1million steps)

Each weak learner is 6-layer DL with less learning step and 10x learning rate. The learning time is 80% shortened than previous study by 6-layer DL with 1million steps.

Conclusion

	Expert Engineer	6-Layers Deep Learning	Q-Boost (20 weak learners)
Computer Resource	Human	GPU GeForce GTX 1080	D-Wave 2000Q
Accuracy Rate	100% (Teacher)	89.5%	90.0%
Training Time	20 years	4.5 hours (1)	49 mins. (x0.18)
#Training Data		48,179	48,179
Time to judge	7.5 hours	1.8 secs.	1.8 secs.

To be honest..., the optimization of selection from 20 weak learners can be easily done by standard digital computers. DW2000Q can deal with 64 learners, and how to deal with more...??? \rightarrow Next Ohzeki-san's talk!

New method for solving constraints Masayuki Ohzeki Tohoku University

Why do we use penalty method?

Ising spin-glass model with two-body interaction and biases is embedded on the Ising machines

$$H(\mathbf{q}) = \mathbf{q}^{\mathrm{T}} Q \mathbf{q}$$

- How to deal with constrained problems?
 - Penalty method

$$F_i(\mathbf{q}) = K_i \quad \forall i \qquad \Longrightarrow H(\mathbf{q}) = H_0(\mathbf{q}) + \frac{1}{2} \sum_i \lambda_i \left(F_i(\mathbf{q}) - K_i\right)^2$$

However, it generates fully-connected Ising model

This leads to an obstacle in quantum annealing

How to solve constraints?

- Standard way to deal with the constraints in optimization problem
 - Penalty method

$$F_i(\mathbf{q}) = K_i \quad \forall i \qquad \Longrightarrow H(\mathbf{q}) = H_0(\mathbf{q}) + \frac{1}{2} \sum_i \lambda_i \left(F_i(\mathbf{q}) - K_i\right)^2$$

- Very simple to implement it
- A large coefficient is necessary
- Lagrange multiplier method

$$F_i(\mathbf{q}) = K_i \quad \forall i \qquad \Rightarrow H(\mathbf{q}) = H_0(\mathbf{q}) + \sum_i \lambda_i \left(F_i(\mathbf{q}) - K_i\right)$$

- It does not yield more two-body interactions
- > Instead, Lagrange multipliers are adaptively changed while solving the optimization problem

Suffering from architecture of the D-Wave 2000Q

Lagrange multiplier method is more suitable for the D-Wave 2000Q

- A classical approach to reduce the squared term: Huburd-Stratnovich transformation
 - Partition function with Penalty method

$$Z = \sum_{\mathbf{q}} \exp\left(-\beta H_0(\mathbf{q}) - \frac{\beta}{2} \sum_{i=1}^N \lambda_i \left(F_i(\mathbf{q}) - K_i\right)^2\right)$$

Partition function with Lagrange multiplier method can be obtained

$$Z \propto \sum_{\mathbf{q}} \prod_{i} \int dz_{i} \exp\left(-\sum_{i} \frac{1}{2} z_{i}^{2} + i \sum_{i} \sqrt{\beta \lambda_{i}} z_{i} \left(F_{i}(\mathbf{q}) - C_{i}\right) - \beta H_{0}(\mathbf{q})\right).$$

- > Solving the saddle-point equation in the large-beta limit in adequate axis and scale
- > Adaptively changing the Lagrange multipliers, following statistical mechanics

Lagrange multiplier method is more suitable for the D-Wave 2000Q

Simplest problem: selection variable in order of descent

Simplest problem: selection variable in order of descent (unembeddable in penalty method!)

CDMA in digital communication (Essentially the same as NBMF problem as in VW work)

For Reconstruction of N input from M insufficient linear measurements $\mathbf{y}=A\mathbf{q}_0$

- Double constraints as in traveling salesman problem
 - > N-item selection (logical spins are N \times N)

- > Double constraints as in traveling salesman problem
 - > N-item selection problem (logical spins are N \times N)

- > Double constraints as in traveling salesman problem
 - > N-item selection problem (logical spins are N \times N)

• Test in travelling salesman problem

• Test in travelling salesman problem

- Lagrange multiplier method with sampling works well
 - Unembeddable cases on the D-Wave 2000Q can be dealt with
 - Precision of solutions can increase
 - Constraints can ben satisfied
- Not yet well established at the moment
 - Theoretical/Experimental assessments are not provided yet
 - Probably a number of iterations for large-N system will remain (harmful for many users)
 - Probably the case on double constraints as in traveling salesman problem is difficult
 - However our method would be helpful for applications of sparse modeling as CDMA and NBMF

- We show several collaborations with T-QARD
 - Forecasting stock attractiveness by Masaya Abe (Nomura Asset Management)
 - Graph partition in quantum simulation by Takako Mashiko (Kyocera)
 - Bus Scheduling Problem by Naoki Maruyama (Tohoku · Hachinohe high school)
 - Black-box optimization by Ami Koshikawa (Tohoku · DENSO)
 - Calibration for Auto-Transmission Shift Control System by Miyama (Tohoku · Aisin AW)
- New method for solving constraints in quantum annealer
 - Lagrange multiplier method for dealing with constraints
 - Theoretical/Experimental assessment will remain in the future work

