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Overview

Storyline that we are expecting from our work.

1. To solve an combinatorial optimization with QA, we usually use the
representation of the objective function as Ising/QUBO.

It is less likely existing in real-world.

3. We propose a method to tackle any binary combinatorial
optimization, by learning the QUBO representation dynamically.

* learn QUBO in a data-driven way by factorization machine
* optimize the constructed QUBO by QA

4. We can take the advantage of QA on wider variety of tasks.
* Harnessing the combinatorial explosion.
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Agenda

P 1. Algorithm of black-box optimization
2. Application on metamaterial design
3. Introduction to fmbgm
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Background: Black-box optimization

Black-box function f receives some input X, and returns output value
f (X), while other information such as analytical form of it or derivative

with respect to X are not available.

Evaluation of black-box function is often expensive.

* Efficiency of wind farm layout
* Stability of protein/molecular conformation

* Property of designed materials

Black-box optimization is to find X
which minimizes f (X) with as few  |Predict
evaluations as possible.

evaluations




Background: Surrogate-based method

Surrogate-based method is an approach relying on regression model.

1. Train a regression model f (x) based on dataset.

2. Find X which minimizes the trained model f (x). (< surrogate)
* Sometimes other index rather than the raw f () is used.

3. On found X, we eva

Given y +_|_ _|_+

uate T (X) and join it to the dataset.

, repeat

WA

e

ri

fomd

Backto 1

5/30



For binary combinatorial optimization

Domain X is assumed to be binary vector space.
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* Regression model can be trained by gradient descent.
(e.g. Adam [Kingma, Ba, 2014])

* Selection part suffers from combinatorial explosion & (D@ if QA)
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Regression by Factorization Machine

We used Factorization Machine (FM) [Rendle, 2012] as a regression model.
The function have two types of model parameters hand V.

Zh T; + ZZ% FUj F LT

1<y f=1

Imear coeff. pairwise interaction

It can be seen that the matrix representing pairwise interaction term
(QUBO'’s Qij) is approximated by a matrix V of rank K. The reduction

of the number of parameters is intendedNto avoid overfitting problem.
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Selection by quantum annealing

Because of the relationship between V and Q, FM model is easily
converted to Quadratic Unconstrained Binary Optimization (QUBO)

problem.
FM Z h;x; + L L Vi, fUf. fT; T

ClL”BC) ]3, jg::flitz :E::(%Ljazgtj

1<) & QA compatible
Solving the QUBO problem means, searching for X which minimizes

f (X), from the binary vector space X.
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Proposed method

The surrogate-based black-
box optimization method we

proposed is termed as FMQA.

This framework is applicable
to any binary combinatorial
optimization problems.

The problems related with
model/QA accuracy should
be inspected carefully,
though.

FMQA

Quantum annealing(QA)
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Use case for metamaterial design
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Comparison with existing method

Bayesian Optimization (BO) is a popular surrogate-based method.

I vaAroposed) | s

Regression Factorization Machine (parametric) Gaussian Process (non-parametric)

Selection Quantum Annealing Exhaustive(+Random) Search

Generally, expressive power of Gaussian Process (GP) is stronger than
that of FM. But GP does not scale well.

For selection part, FMQA is superior to BO for its use of QA rather than
exhaustive search.

10/30



Agenda

1. Algorithm of black-box optimization
P 2. Application on metamaterial design
3. Introduction to fmbgm
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Automated metamaterial design

Metamaterial is material that...
* is composed of some basic materials
* has a special structure, to achieve an unusual property

The search space grows exponentially to the number of building-blocks.

How the structure affects the property is [JJEId G oJe) @S ]ale1d]e]s
The key is to automate and accelerate the process; Ferimental Design

* Evaluation by computer simulation /\

* Learning by proposed method _
Machine

i Simulation
Learning
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Demo case - Thermal radiator

Radiative cooling is an effect that the heat

D
escape from body as emitting light. (well known NN

for the temperature at night in desert)

blackbody vs selective structure
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We can use the effect for powerless cooling
=» Thermal radiator

Radiative cooling is most effective when the
radiation spectrum concentrates on
atmospheric window (8-13 um wavelength).
The spectrum can be calculated by Rigorous

Coupled-Wave Analysis (RCWA) simulation.
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c ter|a|5 StrUCture - Our thermal radiator is
ﬁ%{‘om. - < N designed as a stack of fibers of
Kw& Blackbody _= 0.685 SlC, SiOz, and PMMA The
structure is nicely encoded

into a binary array.

Emissive power [Wesr' pmz]
- (=) oe

[/ /R Only 1 type of Si-based fiber
T el within a layer. (limitation by

P 10011 binary representation)
e 00 ] 0 The conco_rdance of the
v MA : e spectrum is calculated as a
— 010 0 score called Figure of Merit
Sie o 1:00 1100 =) (FOM), which should be
- '000:0: 0= 8¢ | maximized as close to 1.0 as
— 1= or B O - 1 || 1= §8 | possible.
Repeat Unit " Binary Encoding
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Designing 4x3 structure

* FOM maximization on small size problem

* the number of layers L=4 0 1 0 0| The beststructure
for this setti

e the number of columns C=3 é 2 2 8 Or this setting

* 16 bits for encoding SIEE 1

* Compared methods

I R T

Regression None

Selection Exhaustive Exhaustive Random

* The main purpose is to compare FM and GP
* Exhaustive search (over 21°=65536 candidates) can be conducted.
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Designing 4x3 structure - result

FOM value (known best)

FOM=0.624285

m=  FM-Exh.
we BO

One of the best structures

s Random

200 400

Selection ID

Reg. FM GP

This graph means the best
FOM obtained within the
numbers of samples.

The first 50 samples were
taken at random on all
methods as initial dataset.

Our method reached the
best t@astest.

None

Sel. Exh. Exh. Random
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Designing 6x3 structure

* On middle size problem b I:retﬁie:;;ttt?;;t”re
* the number of layers L=6 01 00
e the number of columns C=3 8 8 (1) 8
e 24 bits for encoding 011 1
* Compared methods Almost default

settings for QA
IR TS N T
D-Wave 2000Q_2 1

Regression None num_reads = 50
Selection QA Exhaustive Random anneal_time =20us

* The main purpose is to check if our method scales by QA.
* Exhaustive search was not conducted due to the large search space.
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FOM value (known best)

Designing 6x3 structure - result

The first 100 samples were taken at random as initial dataset.
FMQA worked fine as is in 4x3 structure.
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Designing larger structure

* On varied size problem
* the number of layers L=3,4,5,6,7,8,9
e the number of columns C=3,4,5,6,7,8,9
* up to 60 bits for encoding

e 2000 times of selection on all settings
* not enough for large problems

e Better structure than in literatures is found.

* FOM =0.724

FOM=0.496

FOM=0.515

FOM=0.542

FOM=0.559

FOM=0.441



Designing larger structure - result

* The best structure found showed the best concordance with the
window function.
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P rOfI | I n g Of ru n n I n g tl m e Selection m Regression Evaluation

FM-QA FM-Exhaustive

A profile of running time for various 100000 1
problem sizes.

e Evaluation - RCWA

* Regression - FM

80000 -

60000

e Selection - QA or Exhaustive

finding the next structure to try 45055

Computational time [sec]

With the exhaustive search, time for
selection was dominant, while in our 20000 1
method it was reduced to constant.

9 12 15 18 9 12 15 18
# of encoding bits
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Summary & Conclusion

* We proposed a new method for black-box optimization
to tackle any binary combinatorial optimization.

* FMQA is competitive with BO on small size problems,
and even works fine on larger problems.

* We have shown an example of application.
e automated materials discovery

* Now the bottleneck part is the evaluation part.
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fmbgm — An extension of BQM

. fm b q m tsudalab / fmbgm Ounwatch~ 7 *Star 3 Yrork ©
<> Code Issues 0 Pull requests 0 ZenHub Projects 0 Wiki Security Insights
. B a S e d O n B QM C | a S S fro m D -Wa Ve A trainable Binary Quadratic Model (BQM) as a Factorization Machine (FM)
Ocean SDK |
file

* FM model is contained inside, and
the parameter is trained on dataset

* FM part is implemented with Apache ..
MXNet

optimization of a black-box function in a data-driven way. This could expand the application of annealing solvers.

* Pre-release
* https://github.com/tsudalab/fmbgm
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Demo

* The target function

* Binary encoding of Integer

* The first bit represents sign
(0,0,0,1]
(0,0,1,0]
(0,1,0,0]
(1,0,0,1]
(1,0,1,0]
(1,1,0,0]
* Scaling to range [-1,1]
e Strong correlation between
sign bit and magnitude bits

=>
=>

1

def bin2int(x, scaling=True):
Evaluation function for a binary array
to a signed integer
val, n = 0, len(x)
for i in range(1l,n):
val = (val << 1) + x[1i]
if x[0] == 1:
val = -val

return val * (2**(1-n) if scaling else 1)
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Demo

e Generate initial dataset
* Train the model based on it

import numpy as np
from fmbgm import FMBQM

16 bits length

5 data points =—p XS = np.random.randint(2, size=(5,16))

ys = np.array([bin2int(x) for x in xs])

Easy to train =—» model = FMBQM.from_data(xs, ys)
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Demo

* Repeat sampling and retraining of the model several times

Sampling as easy
as original BQM

Easy to update =»

import dimod
sampler = dimod.SimulatedAnnealingSampler()

for _ in range(15):
res = sampler.sample(model, num_reads=3)
new Xs = res.record|[ 'sample’]
XS = np.r_[xs, new_Xs]

ys = np.r_[ys, [bin2int(x) for x in new_xs]]

model.train(xs, ys)

28/30



Demo

History of sampling
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Demo

* The reconstructed QUBO
parameter

e Strong correlation between
sign bit and magnitude bits
are retrieved.

e Upper bits are strongly
forced to be [1,1,1,1...].
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Thank you for listening.

arXiv: 1902.06573
https://github.com/tsudalab/fmbgm



