

The Hybrid Machine Learning Company

Why is Quantum relevant for FI's?

Small improvement in Return on Assets (ROA) can make a massive \$\$\$ impact

Quantum could help solve intractable problems and deliver performance improvements

The Framework

STAKEHOLDERS

DEPENDENCIES

Business Process/Rules

Data

Resources

Testing

Proof of Concept

Financial Institution Quantum Hardware Co. Quantum Application Co.

Ш

OWNERSHIP

Intellectual Property Process Improvement

OUTCOME

Demonstrate Improved Return on Assets (ROA)

Collaboration Requirements

What to Quantum-ize?

Approaches

- Classical vs Quantum vs Hybrid
- Simulated vs Quantum
- Evaluation of Results

The Use Case: Non-Convex Optimization

- Our quantum computing software allows financial institutions to find better Optimal Solution(s).
- This leads to increased returns, reduced risk, and greatly outperforms the optimal solution found using convex optimization.
- CogniFrame's solution can be customized for a financial institution's objectives such as risk, returns or other constraints.

Sources of Non-Convex Problems

Nature of Problem

Problems that contain a number of local optimality across the energy space (e.g. combinatory optimization, discrete optimization).

Choice of Models

The choice of utility function, risk metrics, objectives functions (e.g. VaR, trading trajectory).

Market Friction and Irrationality

The market cost and irrationality embedded in data resulting in negative eigenvalues, usually noticeable when the scale of the problem grows.

Optimization Constraints

Non-linear/inequality constraints in the optimization problem.

Non-convexity usually emerges with relaxing of certain "handcuffs" in the optimization problem.

Non-Convex Problems

Multiple Use Cases

- ALM Active Portfolio Optimization and cash flow matching for banking book.
- Pension Funds Optimize allocations of member contributions and benefit payouts.
- Collateral Optimization
 - Insurance Solvency II, Portfolio Optimization.
 - Asset Managers Portfolio Optimization.
 - Fixed Income Portfolio Optimization.

Workflow How does our model work?

The Hybrid Machine Learning Company

Early Results using Non-Convex Return Matrices

Hybrid Solution = Classical Methods + D Wave Quantum

- Problem: 12 constraints, 20 variables (investments) per constraint
- Objective: Lower is better; small decimals represent hours of run time or even intractability
- Specialized Classical optimization tools accelerated on Graphics processor (GPU):
 - Brute force use of compute power with a robust optimization method
 - 2.5 hours of runtime
- Industry-standard package (CPLEX 12.8):
 - 2.5 hours of runtime
 - Out-of-memory condition on a 64GB machine
 - Optimal not proven
- Hybrid solution
 - 30 minutes of runtime

-7.46

-8.62

-8.714

Proof Of Concept - Objectives

- Demonstrate "performance improvement" vs Classical
- Demonstrate Financial Value
- Demonstrate Commercial Scalability
- Costs vs Benefits Analysis

Key Challenges

- Choosing the right problem (setting up for success)
- Data aggregation/acquisition dispersed among many legacy systems
- Commercial Scalability
- Multiple Low Energy Solutions evaluating ROA

Commercialization

- Business Models (In-house vs SaaS, Pricing structure, IP)
- Implementation Challenges
- Repeatability

Going beyond the Technology

THANK YOU

Vish R vish@cogniframe.com 416-792-2104

9/24/2019

The Hybrid Machine Learning Company

15