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Water is important

We are water
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NASA Earth Observatory



What is hydrology?



Contaminated groundwater

I The US has more than 100,000 contaminated groundwater sites and the total cost
to remediate them will exceed $100,000,000,0001

I In order to design cost-effective remedial measures, the properties of the
subsurface must be understood

I Hydrologic inverse analysis helps us understand the properties of the subsurface
1National Research Council. Alternatives for managing the nation’s complex contaminated

groundwater sites. National Academies Press, 2013.



Hydrologic inverse analysis

∇ · (k∇h) = 0

Going from k to h is easy
Going from h to k is hard



D-Wave: What does it do?

0th order approximation
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Binary variables in hydrology? Indeed.

Parameter identification using the level set method

Zhiming Lu1 and Bruce A. Robinson1
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[1] This study describes an inverse approach for efficiently
identifying the spatial shapes of zones of low (or high)
permeability using the level set method, given a set of
spatially distributed head measurements. By this method,
the boundaries of zones are characterized by a level set
function. From an initial setting, the unknown regions of
zones are determined by evolving the boundaries in
artificial time using a pseudo velocity field that is related
to the sensitivity of head to permeability and the residual
between the measured head and modeled head at the current
time. A synthetic example presented to illustrate the
method. Citation: Lu, Z., and B. A. Robinson (2006),

Parameter identification using the level set method, Geophys.
Res. Lett., 33, L06404, doi:10.1029/2005GL025541.

1. Introduction

[2] Identifying parameter zonations is probably the most
difficult in parameter identification problems. Traditionally,
the heterogeneous domain of interest is divided into a
number of zones and the parameter value in each zone is
a constant to be determined. Although boundaries of these
zones have significant impact on predicting flow and solute
transport in the domain, in most cases we do not have
enough direct information to infer the size, shape, locations,
and the number of zones. Even in cases for which there is a
clear correlation between identifiable geologic indicators
and hydraulic conductivity, often data control is still insuf-
ficient to infer the size, shape, and location of zones. More
problematic is the situation in which hydraulic conductivity
does not correlate well with lithology. The zonation problem
is extremely ill-posed in these cases. Sun and Yeh [1985]
were the first to propose a method to identify simultaneously
both the parameter zonation and its parameter values for the
hydraulic conductivity field. Using some model structure
identification criteria, Carrera and Neuman [1986] were
able to choose the best parameter zonation pattern among
a number of given alternatives. Eppstein and Dougherty
[1996] used a modified version of the extended Kalman
filter, a data-driven procedure that dynamically determines
and refines zonations. Tsai et al. [2003] used Voronoi
zonation to parameterize the unknown distributed param-
eter and solved the inverse problem by a sequential global-
local optimization procedure.
[3] In this study, we introduce a new approach for

parameter zonation identification based on the level set
method, applying the approach to a simple case of one

material embedded in another. This method can be used to
identify, for example, low-permeability layers in a relatively
higher permeability porous media (or vice versa), or highly
permeable fault zones in the subsurface.
[4] The level set method is a very powerful tool for

solving problems that involve geometry and geometric
evolution [Osher and Sethian, 1988]. It has also been
applied to solving shape optimization problems [Burger,
2003]. By a shape we mean a bounded region D 2 Rn with a
C1 boundary. Instead of working on D directly, in the level
set method a function f(x), with D = {x, f(x) < 0}, is
manipulated to adjust D implicitly.* Since D is unknown, so
too is the function f(x). In shape optimization problems we
start from an initial shape and improve it iteratively, by
updating an initial level set function f(x) iteratively. The
method has been used in several fields, including image
segmentation [Lie et al., 2005] and inverse problems
[Santosa, 1996]. One of the advantages of the level set
method is that it is much easier to work with a globally
defined function than to keep track of the boundaries of
regions of interest, which may split into many regions or
merge into larger ones.
[5] It is important to emphasize that, comparing with

geostatistical inverse methods such as indicator (co-)krig-
ing, the inverse approach based on the level set method
requires no a priori assumptions on shape, size and
locations of zones to be sought or correlation structures of
these zones. This advantage should be very useful for ill-
posed problems in hydrogeology.

2. Problem Statement

[6] Consider transient water flow in saturated media
satisfying the standard governing equation

r � Ks xÖ Ürh x; tÖ Üâ ä á g x; tÖ Ü à Ss@h x; tÖ Ü=@t; x 2 W Ö1Ü

subject to appropriate initial and boundary conditions. Here
h(x, t) is the hydraulic head, Ks(x) is the saturated hydraulic
conductivity, Ss is the specific storage, and W is the flow
domain of interest. For simplicity, Ss is taken to be constant,
because its variation is relatively small compared to that of
the hydraulic conductivity.
[7] To introduce this method in the simplest way possi-

ble, we assume that the saturated hydraulic conductivity is a
spatially varying binary random variable, i.e., one material
being (disjointly) embedded in the other. Although there is
no direct information regarding the size, shape, and loca-
tions of these zones, it is assumed that the hydraulic
conductivity values for these two materials are known. This
assumption may be justified. In fact, in many sites, hydrau-

*Here and throughout X has been replaced with x. The article as originally published is online.

GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L06404, doi:10.1029/2005GL025541, 2006
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“This study describes an inverse approach for
efficiently identifying the spatial shapes of zones of
low (or high) permeability using the level set
method, given a set of spatially distributed head
measurements.”



Computational hydrology: a historical perspective

“In 1979,Hydraulics of Groundwater was published,
in which I tried to bring the comprehensive
approach and mathematical modeling of flow and
contaminant transport to the field of ground water
hydrology.”

“Nowadays, models are accepted as fundamental
tools in practice, but not long ago the question of
whether models should legitimately be used as a
prediction tool was still being debated.”



Computational hydrology: a historical perspective

“The identification problem as stated in the present
work is solved as a linear or a quadratic
programing problem. The solution in the latter
case is much more complicated, whereas the
solution of the linear programing problem is based
on readily available computer programs.”

“Examination shows that the best results were
obtained when [a quadratic programming
problem] was used.”

The D-Wave “solves” binary quadratic
programming problems.



Identifying the parameters of an aquifer cell model with D-Wave
1D groundwater flow equation

Finite difference equation: 0 = ∇ · (k∇h)

0 = k1(h1 − h2) + k2(h3 − h2)

Reformulate as a least squares problem

0 ≈ [k1(h1 − h2) + k2(h3 − h2)]2

Fill in, say, h1 = 1, h2 = 1
3 , h3 = 0
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What did D-Wave have to say?

1,000 “solutions,” but only 2 are distinct

Best solution

q1 = 0 =⇒ k1 = 1
q2 = 1 =⇒ k2 = 2

Correct 869 times out of
1,000

2nd best solution

q1 = 0 =⇒ k1 = 1
q2 = 0 =⇒ k2 = 1

Wrong 131 times out of
1,000

h1 h2 h3k1 k28/9 -1/9-4/9



Why these solutions? Why these frequencies?

f (q1, q2) =
8

9
q1 −

1

9
q2 −

4

9
q1q2 +

1

9
P(Q1 = q1,Q2 = q2) ∝ exp [−βf (q1, q2)]

β ≈ 16.6

q1 q2 f (q1, q2) P(Q1 = q1,Q2 = q2) D-Wave probabilities (106 samples)

0 0 1
9 0.136 0.136

1 0 1 5× 10−8 10−6

0 1 0 0.863 0.863
1 1 4

9 0.0005 0.00018



Can we go bigger? Yes, much bigger, but not that big.

The graph for a bigger problem is like a long string
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10k1 k2 k3 k4 k5 k6 k7 k8 k9



How to go pretty big

I To go big, we have to find a long, non-intersecting path through the D-Wave’s
graph

I Finding the longest such path is NP-hard

I Tools like KaLP2 are designed to solve this problem

I KaLP chokes on the D-Wave 2X’s graph
I Exploit what structure is in the hardware graph, use KaLP on smaller graphs

I Decompose the hardware graph into subgraphs (several neighboring unit cells) in a
snake-like pattern

I Use KaLP to find the longest path through these subgraphs
I Connect the paths through the subgraphs

2Balyo, Tomas, Kai Fieger, and Christian Schulz. ”Optimal Longest Paths by Dynamic
Programming.” arXiv preprint arXiv:1702.04170 (2017).



What happens when we solve a “big” problem?

What is the expected amount of time to get all 972 ki ’s correct?

hobsi = hi + σZ

ki = kl + qi (kh − kl)

kl = 1

Z ∼ N(0, 1)

Not bad, considering the number of possible answers is
39,916,806,190,694,396,233,127,454,260,736,771,321,349,025,208,709,150,830,050,944,848,744,237,837,
379,281,315,699,159,309,852,714,021,786,848,936,883,849,904,879,448,759,767,871,873,214,783,435,965,
696,628,406,400,113,459,021,713,530,350,754,428,887,259,743,653,067,134,890,878,479,866,616,209,102,
417,407,777,777,105,368,960,883,150,142,418,137,515,120,832,847,169,904,606,880,198,557,696

Struggles with large contrasts though (a significant practical limitation)



Is this problem big?

Intel 8080 D-Wave 2X Modern CPUs

1 node
2 parameters

973 nodes
972 parameters

766,283 nodes
252 parameters



Hefez, Shamir, and Bear also solved a 2D problem

Can we solve a 2D problem on the D-Wave? Yes.



2D groundwater flow equation
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2D finite difference equation
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Reformulate as a least squares problem
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+ kx1,1(h1,2 − h2,2) + kx2,1(h3,2 − h2,2)]2
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2D groundwater flow equation
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2D groundwater flow equation
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2D finite difference grid and graph



A bigger 2D finite difference graph
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D-Wave graph vs. 2D finite difference graph



D-Wave graph→2D finite difference graph (embedding)



D-Wave graph→2D finite difference graph (embedding)
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What does D-Wave have to say?

I If you take 10,000 samples from the
virtual full yield solver
I D-Wave gets ky correct everywhere
I D-Wave gets kx correct in ∼90% of

the locations

I Why is it better at ky than kx?
I ky is aligned with the large-scale

pressure gradient, and kx is
perpendicular to it

I QUBO coefficients associated with
ky tend to be larger than those
associated with kx
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Is this problem big?

Intel 8080 D-Wave 2X Modern CPUs

24 nodes
48 parameters

196 nodes
312 parameters

766,283 nodes
252 parameters



Computational hydrology: a historical perspective

“The identification problem as stated in the present
work is solved as a linear or a quadratic programing
problem. The solution in the latter case is much
more complicated, whereas the solution of the
linear programing problem is based on readily
available computer programs.”



D-Wave vs. Gurobi in a time-to-target benchmark
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I D-Wave sets a solution quality target.
How long does it take Gurobi to
match or beat it?

I Gurobi is a state-of-the-art
mathematical programming solver that
can solve BQPs/QUBOs

I Gurobi lost the race in 69/100 cases
and hit the 15 minute time limit in
64/100 cases

In the instance shown previously, we relaxed the 15 minute time limit. Gurobi
exhausted the 256GB of memory on the machine after ∼ 4 hours without matching the
target. We reran Gurobi in a mode that uses less memory for 24 hours and it failed to
match the target set by the D-Wave.



Conclusions

I The D-Wave can be used to solve hydrologic inverse problems

I We solved problems with D-Wave’s 3rd generation chip that are large compared to
what Hefez et al solved with Intel’s 3rd generation chip

I In many instances of the 2D problem we solved, the D-Wave outperformed a
state-of-the-art classical tool whose use is consistent with the motivations of
Hefez et al

I There is still a ways to go before practical applications to hydrology can be made
I Both in terms of methods and hardware improvements

I O’Malley, D. (2018). An approach to quantum-computational hydrologic inverse
analysis. Scientific Reports, 8(1), 6919.
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