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ing generation of quantum annealing processors. It provides examples
of minor embeddings and discusses performance of embedding algo-
rithms for the new topology compared to the existing Chimera and
Pegasus topologies. It also presents some initial performance results
for simple, standard Ising model classes of problems.
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1 Introduction
This paper describes D-Wave’s upcoming annealing processor topology; that is, the pattern
that defines how the processor’s qubits and couplers interconnect.
Zephyr is a significant advancement over D-Wave’s previous Pegasus and Chimera topolo-
gies, available in the Advantage and D-Wave 2000Q products respectively. Zephyr features
qubits of degree 20 and native K4 and K8,8 subgraphs.

2 The Zephyr Topology
In Zephyr, as in Pegasus and Chimera, qubits are oriented vertically or horizontally. Chimera
has two types of coupler: internal couplers connect pairs of orthogonal (with opposite ori-
entation) qubits, and external couplers connect colinear pairs of qubits (that is, pairs of
qubits that are parallel, in the same row or column). The Pegasus family has, in addition to
Chimera’s internal and external couplers, a third type: odd couplers. Odd couplers connect
parallel qubit pairs in adjacent rows or columns. The Zephyr topology features these three
coupler types, with a total of two odd couplers, two external couplers, and sixteen internal
couplers.
In the Chimera topology, qubits have a nominal length of 4 (each qubit is connected to 4
orthogonal qubits through internal couplers) and degree of 6 (each qubit is connected to 6
different qubits through couplers). In the Pegasus family, qubits have a nominal length of
12 and degree of 15. In the Zephyr topology, qubits have a nominal length of 16 and degree
of 20.

2.1 Formulaic Description
In broad strokes, a Zephyr graph with grid parameter m and tile parameter t, notated Zm,t
(or simply Zm when t = 4), contains 8tm2 +4tm qubits, and has maximum degree 4t+4. For
example, a Z15 graph contains 7440 qubits in total. Abstractly speaking, a Zephyr graph can
be constructed by first constructing a Chimera graph C2m+1,2m+1,t, adding odd couplers,
joining qubits into pairs along tile boundaries in an alternating fashion, and finally deleting
unpaired qubits on the periphery. This construction is shown in 1, but not elaborated in full
rigor.
We enumerate the qubits of Zm with vectors of length 5, where a qubit (u,w, k, j, z) has
coordinates

• u is the orientation, indicating if a qubit is vertical (u = 0) or horizontal (u = 1).

• w is the perpendicular block offset, indicating the index of the qubit’s tile, in the
orientation perpendicular to u, with 0 ≤ w < 2m + 1. (That is, if u = 0, then w is a
horizontal (column) index, and if u = 1, then w is a vertical (row) index.)

• k is the qubit index, indicating the index of a qubit within a tile, and 0 ≤ k < t.

Copyright © D-Wave Systems Inc.
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Figure 1: Construction of the Zephyr lattice Z1 from a Chimera C3,3,8. (top left) The C3,3,8

graph in the point-and-line drawing style, with black nodes, edges to be contracted in orange, and
remaining edges grey. (top right) The same C3,3,8 graph drawn in qubit-loop style, with internal
edges drawn as grey circles, and odd and external couplers drawn as barbells colored as above.
(bottom left) The Z1 graph drawn in point-and-line style. (bottom right) The Z1 graph drawn
in qubit-loop style.

Copyright © D-Wave Systems Inc.
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• j is the shift identifier, with j = 0 to indicate that a qubit is shifted to the left/top
and j = 1 to indicate that a qubit is shifted to the right/bottom.

• z is the parallel tile offset, indicating the index of the qubit’s tile in the orientation
parallel to u, with 0 ≤ z < m. (That is, if u = 0, then z is a vertical (row) index, and
if u = 1, then z is a horizontal (column) index.)

In the following description of the three types of couplers, a coupler p ∼ q exists whenever
both p and q are qubits in Zm,t. The three sets of Zephyr couplers are:

• external: (u,w, k, j, z) ∼ (u,w, k, j, z + 1)

• odd: (u,w, k, 0, z) ∼ (u,w, k, 1, z − α) for α ∈ {0, 1}

• internal: (0, 2w + 1 − α, k, j, z − jβ) ∼ (1, 2z + 1 − β, h, i, w − iα) for α ∈ {0, 1} and
β ∈ {0, 1}

We define an integer labeling for Zephyr via the function

(u,w, k, j, z) 7→ z +m(j + 2(k + t(w + (2m+ 1)u))),

which is a bijection between the 8tm2 + 4tm coordinate labels and the interval

{0, · · · , 8tm2 + 4tm}.

2.2 Clique and Bipartite Embeddings for Problem Solving
As we did with the Pegasus family, we use the fact that Zephyr (with odd couplers removed)
can be viewed as a graph minor of Chimera to ease the computation of efficient clique
embeddings. Optimal embeddings of complete graphs, ε : Ka → Z consist of a parallel
paths of horizontal qubits and a parallel paths of vertical qubits, connected at a point of
intersection to make a chains. The algorithm of [1] can be modified to produce embeddings
with chains of length m. For graphs with full yield, the resulting embedding is equivalent
(albeit with shorter chains) to an embedding in a full-yield Chimera C2m−1,2m−1,2t (the
square Chimera graph obtained by deleting the peripheral cells of C2m+1,2m+1,2t). Thus,
the size of this embedding is 2(2m− 1)t, or 16m− 8 when t is 4.
Likewise, the largest useful complete bipartite graphs are obtained by working within the
non-peripheral square. Complete bipartite embeddings ε : Ka,b → Z consist of a parallel
paths of horizontal qubits, each in a different row, and b parallel paths of vertical qubits,
each in a different column. This gives an embedding of K2(2m−1)t,2(2m−1)t (or K16m−8,16m−8
when t is 4), where all chains have length m.

3 Lattice Embeddings
Recent work has shown great promise in the simulation of two- and three-dimensional quan-
tum magnetic systems using quantum annealers [2, 3]. In Pegasus, embedding of 3D lattices

Copyright © D-Wave Systems Inc.
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Figure 2: Example of a Zephyr graph Z3,1, with external edges drawn as dotted lines. This graph,
omitting the external edges, is a checkerboard lattice, resulting in a variety of possible direct lattice
embeddings, with no chains required.
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was simplified from four-qubit chains to two-qubit chains, and leading to a scaling improve-
ment in solution time [4]. Similarly, 3D lattices can be embedded in Zephyr using two-qubit
chains. However, several examples show that embedding low-dimensional lattices in Zephyr
is easier than in Pegasus. Fig. 2 shows a Z3,1 graph, wherein a direct embedding of a
checkerboard lattice is clearly visible. In Chimera and Pegasus, qubit spin ice [5] has been
implemented using four-qubit chains and two-qubit chains, respectively. In Zephyr, this can
be done with one-qubit chains, with no translation between the logical and embedded sys-
tems. As an immediate consequence of the direct embedding of a checkerboard lattice, we
can also directly embed the square lattice and the Shastry-Sutherland lattice [6]. Further-
more we can directly embed in Zephyr the lattice gauge theory described in [7], whereas
embedding in Chimera took four-qubit chains [8]. Thus we can expect the Zephyr topology
to provide a rich testbed for effectively probing quantum effects in materials.

4 Heuristic Embedding
We compare the Zephyr topology with the Pegasus and Chimera topologies by examining
the results of heuristic embedding of problems into each of the three topologies. In an effort
to make fair comparisons, we consider two topologies roughly equivalent when they have
the same width: the number of horizontal (equivalently, vertical) nodes in the graph that
results from contracting external couplers. The formulas for widths are 16m + 8, 12m − 4,
and 4m for Zm, Pm, and Cm respectively (note, the peripheral components of Pegasus Pm
are removed). The heuristic embedding algorithm used for this study is minorminer version
0.2.5, denoted A below.

4.1 Methodology
For problem s and topology T , we write c ∈ A(s, T ) for chain c produced by algorithm A
for embedding s→ T . For a fixed number of trials, t, we define three metrics,

• average chain length: `(s, T ) = 1
t

∑t
i=1

1
|s|

∑
c∈A(s,T ) |c|,

• maximum chain length: L(s, T ) = 1
t

∑t
i=1 maxc∈A(s,T ) |c|,

• average runtime: τ(s, T ) is the time taken to produce the t embeddings, A(s, T ),
divided by t.

Note that heuristic embedding algorithms cannot generally be expected to produce em-
beddings every time. To make these metrics sensible, we execute A(s, T ) until we have
accumulated t = 100 embeddings and record the total time spent including failures. If we
fail to produce 100 embeddings for any graph in a family, into any target topology, we
discard the entire family from our results.

Copyright © D-Wave Systems Inc.
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Figure 3: Heuristic embedding benchmark results. See Section 4 for more details.

4.2 Results
Figure 3 shows summary data for comparison of small and large topologies. The small
topologies have the same width as the D-Wave 2000Q C16 (compared against Z4 and P6),
and the large topologies have the same width as a projected Z15 product (compared against
P21 and C62). In both cases, we have normalized the scores in each graph family to the
greatest measure across the three topologies.
The following problem sets were chosen for their diversity, to ensure that these trends are
not a result of properties of a particular problem set:

• small graphs: a collection of named graphs found in computer algebra systems such
as Sage and Mathematica; the largest being the 126-node Tutte 12-cage, path and
star graphs with up to 100 nodes, complete bipartite graphs with up to 20 nodes,
grid graphs with up to 100 nodes, and hypercubes with dimension up to 7; labeled
small_graphs.

• Beasley 100: graphs from the Beasley [9] max-cut dataset with 100 nodes, labeled
beasley_100.

• dense structured graphs: complete graphs Kn, complete bipartite graphs Kn,n and
circular complete graphs K4n/4, labeled dense_structure.

• not-all-equal-3SAT graphs near the critical threshold, labeled nae3sat.

Copyright © D-Wave Systems Inc.
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• Erdös-Rényi random graphs, G(n, p),

– G(70, .25) (labeled random_gnp25),
– G(60, .50) (labeled random_gnp50), and
– G(50, .75) (labeled random_gnp75).

• random cubic graphs: graphs with uniform degree 3, labeled random_cubic.

• random growth: graphs generated through the duplication_divergence_graph gen-
erator from networkx with p = 1/3, labeled random_growth.

Overall, we see a marginal improvement in Zephyr over Pegasus, around 2-10% improvement
in both runtime and chain lengths.

5 Treewidth
One measure of the complexity of a graph is its treewidth [10]. For example, the minimum
energy of an Ising model defined on a graph of treewidth τ with n vertices can be found
in time O(n2τ ) using dynamic programming [11]. Here we show that the treewidth of the
Zephyr Zm graph is between 16m and 16m+8. For comparison, the treewidth of a Chimera
Cm graph is 4m. In both cases, the treewidth is roughly the number of rows (or columns)
of qubits as described in Section 5.1.
To lower-bound the treewidth, consider embeddable complete graphs. A complete graph Kn

has treewidth n−1, and we will show that a complete graph embedding of size 16m+ 1 can
be embedded in Zm in Section 5.1. It is possible to upper-bound the treewidth by 16m+ 8
by providing a vertex elimination order (see [12, Theorem 6] for background). One such
vertex elimination order is as follows:

• eliminate vertical qubits, one parallel path column at a time;

• eliminate horizontal qubits in any column once all vertical qubits adjacent to them
have been eliminated.

5.1 Clique Embedding for Treewidth Estimate
In this section, we briefly show a family of clique embeddings which demonstrate that cliques
of size 16m+1 can be embedded into Zm with m > 1. Almost all chains in these embeddings
contain 2m qubits, and are expected to perform significantly worse than the embeddings
described in Section 2.2, which have shorter chain lengths. The purpose of this exposition
is to support a computation of the treewidth complexity measure.
We construct our family of embeddings with a set of chain descriptors. Each chain descriptor
is a set of 4-tuples (u,w, k, j) which corresponds to the track c(u,w, k, j) = {(u,w, k, j, z) :
0 ≤ z < m}. For m > 1, let

Copyright © D-Wave Systems Inc.
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Figure 4: Example of a K49 embedded into a Zephyr graph Z3, as shown in Section 5.1, in the
qubit-loop style. Odd and external edges within a chain are drawn thicker in the same color as
the chain; internal edges within a chain are drawn with a larger black circle. Chains are colored
according to the set they belong to; A: , B: , C: , D: , E: .

Copyright © D-Wave Systems Inc.
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A = {{(0, 3, 0, 0)}, {(1, 3, 0, 0)}},

B = {{(0, w, k, 1), (1, w, k, 1)} : 1 ≤ w < 3, 0 ≤ k < 4},

C = {{(0, 0, k, j), (1, 1 + j, k, 0)} : 0 ≤ k < 4, 0 ≤ j < 2},

D = {{(0, 1 + j, k, 0), (1, 0, k, j)} : 0 ≤ k < 4, 0 ≤ j < 2},

and

E = {{(0, w, k, j), (1, w, k, j)} : 3 ≤ w < 2m, 0 ≤ k < 4, 0 ≤ j < 2 and w + k + j > 3}.

Expanding the chain descriptors of A,B,C,D, and E (with 2, 8, 8, 8, and 16m−25 descrip-
tors respectively) into chains, we get an embedding of K16m+1 into Zm. See Figure 4 for
this embedding in Z3. Note that this embedding is chosen in part due to the simplicity of its
description. It is possible to modify the embedding to produce two chains of length m and
16m− 1 chains of length m+ 2, by modifying E to join tracks mostly along an antidiagonal
and judiciously trimming all chains not in A.

6 Binary Quadratic Models
In this section we examine some basic static properties and heuristic performance insights for
binary quadratic model optimization on the Zephyr topology, comparing to other processor
architectures. In Section 6.1 we present a detailed analysis of the Hamze-deFreitas-Selby
(HFS) algorithm [13–15]. This is a powerful heuristic for Chimera lattice problems, but
relatively impractical for Pegasus and Zephyr.
For a graph defined by vertex and edge sets, {V,E}, a classical Ising model over N spins
s = {−1, 1}N is defined by a Hamiltonian H =

∑
ij∈E Jijsisj +

∑
i∈V hisi; this is a special

(but sufficiently general) case of a binary quadratic model that is the focus of this section. In
a standard quantum annealing protocol, the problem Hamiltonian (ĤP ) is encoded with each
spin si replaced by a Pauli operator σzi , and acts alongside quantum fluctuations induced
via a transverse field driver Hamiltonian ĤD = −

∑
i σ

x
i . The operator in effect during the

anneal is Ĥ = J ĤP +Γ ĤD. When a quantum processor is used as an annealer we begin with
a large driver term Γ (and small problem term, J ). We then smoothly decrease (increase)
these terms so that the wavefunction concentrates over low-energy states of the problem
Hamiltonian, where it is measured to provide an estimate to the ground state.
Practical competitors to a quantum processor consist primarily of classical heuristics based
upon Markov chain methods [16–18]. Some heuristics can be tailored to exploit lattice
structure, other heuristics are topology agnostic. The largest advantage from annealing
is anticipated in problems with the largest number of degrees of freedom; for this reason
we evaluate problems defined directly over the processor architecture, alongside lattice-
leveraging heuristic competitors. To understand performance we take the simplest possible
exemplar for hard problems over Zephyr, Pegasus and Chimera topologies: the standard spin-
glass problem with independent and identical distributed couplings Jij = ±1 ∀ij ∈ E and
hi = 0 ∀i ∈ V . This problem is anticipated to have a zero temperature (and finite transverse
field) spin-glass phase transition, making determination of a ground state challenging [19].

Copyright © D-Wave Systems Inc.
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The open-source Ocean SDK package provides a simulated thermal annealing (SA) imple-
mentation, dwave-neal [20]. For SA implemented with dwave-neal we can use the default
geometric schedule T = Tmax(Tmin/Tmax)b/(B−1) with b = 0 . . . B− 1. Tmax = k/ log(2) for
maximum lattice connectivity k (ensuring fast mixing in the initial algorithm stage) and
Tmin = 2 log(100N) (ensuring excitations are absent in returned samples with high prob-
ability). For the case of SA an important figure of merit is the time per sweep: the time
required to attempt a single Metropolis update on every variable. We use this value to infer
some performance limitations in SA, and also on closely related heuristics such as parallel
tempering, population annealing, and path-integral Monte Carlo.
Ocean SDK also provides a steepest greedy descent (SGD) implementation, dwave-greedy,
a useful heuristic for optimization and inference. Typically, applications use a very large
number of reads, where wallclock time is proportional to number of samples, so the time
per sample is a useful figure of merit.
We evaluate the figures of merit at full processor scale, defect-free over the largest graph
component in Table 1. The maximum scales for D-Wave 2000Q and Advantage processors
are C16 and P16 respectively, whereas a future Zephyr-based processor is projected to be
Z15. For dwave-neal we set B = 1024 and allow 256 sweeps at each beta and consider
time for a single sample. For dwave-greedy we draw 1024 samples. We present results
averaged over 25 model instances in the table. Times are measured single threaded on a
Intel® Core™i7-8665U CPU.

Lattice dwave-neal dwave-greedy
time (s) per sweep time (s) per sample

Chimera C16 4.0× 10−5 1.1× 10−3

Pegasus P16 1.4× 10−4 1.2× 10−2

Zephyr Z15 2.3× 10−4 1.7× 10−2

Table 1: Simulated thermal annealing and steepest greedy descent operation time scales

Due primarily to increased size, and in part owing to increased connectivity, time scales are
longer for the proposed Zephyr architecture. The SA and SGD algorithms are amenable to
lattice-orientated parallelization [17]. Given that GPU implementations can be communi-
cation and memory limited, we anticipate this computational platform to be relatively less
effective in supporting the Zephyr architecture where spatial division of variable sets creates
relatively densely connected blocks with high external connectivity. Beyond these intuitive
observations, lattice-specific platform choice and optimization is beyond the scope of this
section.
In Section 6.1 we evaluate an HFS method, which is significantly different from dwave-neal
and dwave-greedy, and is competitive as a heuristic optimizer in the case of Chimera-
structured binary quadratic models. This method is not effective for Zephyr. Very generally,
lattice-leveraging heuristics are more costly when applied to the more highly connected
Zephyr architecture. An example is the recently proposed tensor-network based method for
lattice inference [21]. This heuristic exploits the fact that one can process a Chimera lattice
cell-row by cell-row, where cells are K4,4 in type, efficiently compressing and passing infor-
mation in the form of (cell-level) matrix product states. For Zephyr the higher connectivity

Copyright © D-Wave Systems Inc.
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Figure 5: (left) HFS algorithms propose energy minimizing moves of large row (or column)
like regions. By applying this process iteratively we potentially optimize the full problem. As the
(geometric) thickness of rows increases, the cost of operating the move grows exponentially, so
the algorithm is limited to narrow rows. Higher connectivity within rows also raises the cost, and
connectivity outward from the row weakens effectiveness, hence moves in Zephyr are both more
costly and less effective than in previous processor generations. Examples from top to bottom are
shown for Chimera (C4), Pegasus (P4), and Zephyr (Z4), where shading indicates the rows (and
blocks) underlying a region. (right) We evaluate the effectiveness of an HFS scheme relative to
SA (time to achieve equal energy). The HFS implementation studied here is much slower than SA.
Furthermore, in moving from Chimera to Pegasus and Zephyr, the cost of HFS methods increases
by a large amount, but achieving equal quality outcomes requires only marginally longer in SA.
It has been demonstrated that optimization in Chimera can substantially reduce this time, but
optimization for the more complicated moves in Pegasus and Zephyr is challenging.

implies that a similar construction would naively need cells of treewidth 17 as opposed to
4, with a corresponding exponential penalty in the use of tensor-networks. Without consid-
ering the practical difficulties of efficient implementation, this theoretical slowdown already
makes the method impractical. In the architecture change from Chimera to Pegasus [22],
we studied several static properties and heuristic algorithms. Results presented therein are
also expected to extend qualitatively to Zephyr, as a function of increased connectivity. As
one example, parallel tempering with inter cluster moves (ICM) were examined [23]. These
are less effective in Pegasus than Chimera, a conclusion we expect to hold for Zephyr, since
impactful ICMs are more efficiently constructed at lower connectivity.

6.1 The HFS Algorithm
Standard implementations of SGD, SA and related algorithms search a space by considering
energy changes as a function of single variable moves. The power of HFS methods arises
from considering moves over large variable sets [13–15], sets which (on average) have strong
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internal correlations and weaker external correlations. In most topologies, updates come at
an exponential cost in the set size, or it is simply impossible to isolate large sets with strong
internal (relative to external) coupling, offsetting any benefit. However, in the context of
processor architectures the regular cell-like structure allows for an intuitive identification of
such regions, and in context of Chimera, algorithms based on these set choices have proved to
be powerful. In consideration of the last architecture change from Chimera to Pegasus [22],
we analyzed the scaling for several heuristics. This included an analysis of HFS methods
where regions were constructed on-the-fly by a heuristic. However, to make best use of HFS
it is valuable to exploit knowledge of the regular static lattice structure as we do in the
analysis of this section.
We construct small, strongly connected sets of variables (regions, R) for processor architec-
tures as shown in Figure 5 — by correspondence with methods that have proved successful
over Chimera [14]. For Chimera we construct an elemental row by joining K4,4 blocks hori-
zontally. For Pegasus we can construct an elemental row by joining K4 blocks horizontally.
For Zephyr we join K+

8,8 blocks horizontally (where K+
8,8 denotes a K8,8 subgraph along

with four odd couplers per orientation). Although thinner rows are possible, subdivision of
the cells performs poorly since we want to keep strongly connected variables together (on
average, they are strongly correlated), and there is no natural way to subdivide the blocks.
From elemental row regions we can also create thicker regions by merging adjacent rows.
The number of rows merged is the thickness. Moves over thicker rows are more powerful,
but also exponentially more costly in the thickness. For an HFS scheme of given thickness
we include the corresponding rows, along with columns of the same thickness, related by
symmetry. We have a hierarchy of HFS schemes as a function of the thickness (thickness 1
or 2 for Chimera and Zephyr, or thickness up to 6 for Pegasus, see Figure 5). Thus we have
10 different schemes (R) as a function of the lattice type and thickness, with each scheme
defined by a set of regions.
Given an HFS scheme we evaluate a simple optimizer by iterating over the corresponding
regions (Algorithm 1). We initialize our state uniformly at random. We then select a re-
gion (column or row) uniformly at random, and minimize the assignment over this region
conditioned on the variable assignments outside the region. For a given scheme each spin
is updated on average once every S(R) updates, which can be considered a sweep. After
performing a sweep with no decrease in energy we terminate the algorithm (updates are
no longer efficiently yielding improved energies). This algorithm is didactic and captures
qualitatively the relative power of different schemes.
The optimization step uses the bucket-tree elimination algorithm [11] implementation in
C++ for generic graphs [24]. This algorithm requires an elimination order. For row regions
we can make use of the standard elimination orders [20] restricted to the corresponding
variables. For column regions we use the same orders (up to horizontal to vertical qubit
symmetry transformation). These elimination orders are optimal1, in the sense that they
saturate the treewidth bound for the region, which can be brute forced independently for
these examples.
Theoretical features of the HFS algorithms studied are enumerated in Table 2. Methods
built from column and row regions of treewidth 4 and 8 have proven competitive against

1Except for boundary regions in Pegasus and Zephyr, where some inconsequential savings are possible
with alternative orderings
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Algorithm 1 Minimize N variable lattice problem: H(x) =
∑
i hixi +

∑
ij Jijxixj

1: procedure Greedy-HFS(h, J , R)
2: Select uniform random x ∈ {−1, 1}N
3: num_unsuccessful_updates = 0
4: while num_unsuccessful_updates < S(R) do
5: select uniformly at random a region R from the set R
6: HR(y) =

∑
ij∈R Jijyiyj +

∑
i∈R[hi +

∑
j 6∈R Jijxj ]yi

7: xR ← argmin(H(xR))
8: if update lowers energy then
9: num_unsuccessful_updates = 0
10: else
11: num_unsuccessful_updates = num_unsuccessful_updates + 1

return x

QPUs exploiting Chimera topology. Regions built for Pegasus and Zephyr are necessarily of
higher treewidth. Optimization for a region of treewidth t requires memory scaling as 2t+1.
The successor architectures to Chimera necessarily involve slower updates.

QPU architecture Row/Column Thickness Treewidth
Chimera [1,2] [4,8]
Pegasus [1,2,3,4,5,6] [4,5,7,9,11,13]
Zephyr [1,2] [9,17]

Table 2: Algorithmic complexity properties of some HFS schemes

As a simple measure of utility for these schemes consider the energies returned per sample,
versus the energy returned by SA. For a set of 25 problems on each processor architecture
we draw one sample by the HFS heuristic providing, most likely, a local minima, with an
associated wallclock time. We then run SA for the same problem, doubling the number of
sweeps for a single sample until we match (or improve upon) the energy obtained by the HFS
algorithm. We use the same geometric scheme and temperature bounds as described in the
previous section for dwave-neal, doubling B at each stage with 1 sweep per temperature in
the schedule. Both algorithms are implemented single threaded on a Intel® Core™i7-8665U
CPU. We plot the time required by HFS against the time required by SA in Figure 5(right).
We observe that these methods are both far more costly in the Zephyr and Pegasus proces-
sors and far less effective, relative to Chimera.
In this implementation, none of the methods (including those for Chimera) are competi-
tive against SA in reaching low energies. More efficient implementations of HFS algorithms
for Chimera graphs exist, such as that by Selby [13], and can outperform SA. These op-
timizations involve differences in coding, region sets and termination criteria, comparable
methods might be attempted for Pegasus and Zephyr. As an example of a region difference,
Alex Selby’s HFS implementation for Chimera arises in combining rows and column regions
through additional thin bridge regions. Such bridges do not qualitatively impact our con-
clusion, and we note they are relatively difficult to construct in Pegasus and Zephyr owing
to more complex inter-cell connectivity. Furthermore, the C++ implementation is better
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suited to large treewidth cases, so we anticipate less leeway to optimize for Zephyr than
Chimera. We anticipate the two orders of magnitude gap in performance between Chimera
and Zephyr would be larger in carefully optimized code, so that Zephyr based HFS methods
would remain uncompetitive with SA despite the competitiveness of well optimized Chimera
codes.
We have shown in our analysis that HFS is relatively inefficient in Zephyr and Pegasus.
However, this is a concise didactic study, and it is important to note some caveats. (1) We
use a specific generic graph software implementation for HFS, and a specific generic graph
SA implementation, for wallclock timing. (2) The Chimera, Pegasus and Zephyr lattices
compared in Figure 5(right) differ in size. We considered the cases with equally many qubits
and the performance gap remained large. (3) We consider only one canonical random model
per lattice type. Other models with particular structure may behave quite differently. (4)
For Pegasus and Zephyr we also considered another natural set of regions, those stretched
along diagonals as opposed to rows columns, and observed similar outcomes.
HFS methods are a rich family of techniques that can be used as part of sampling and
optimization heuristics for certain lattices. We studied the performance of a hierarchy of
intuitive HFS methods, qualitatively matching methods that proved successful over Chimera
lattice problems. We used performance of SA as a comparison point. In Zephyr HFS methods
are ineffective in absolute terms relative to SA, and relative to Chimera HFS methods. We
anticipate that problems over a Zephyr topology will be less susceptible to optimized HFS
implementations than comparable problems defined over Chimera and Pegasus lattices.

7 Conclusion
The architecture of D-Wave’s upcoming generation of annealing processors introduces qubits
with a higher degree of connectivity in the new Zephyr topology. In this paper we describe,
and provide a formulaic description for, the new topology. We describe some key advantages
over previous offerings, including:

• Cliques and bicliques. Zephyr Zm supports embedding cliques of up to size 16m − 8,
with chains of length m, and bicliques up to K16m−8,16m−8, with uniform chain length
of m.

• Lattices. Zephyr supports 2D and 3D lattice embeddings with equal or shorter chain
lengths than previous topologies.

• Heuristic embedding. Zephyr sees a marginal improvement in heuristic embedding
performance when compared to Pegasus, and both topologies are a significant im-
provement over Chimera.

• Treewidth. Zephyr Zm has a treewidth of between 16m and 16m+ 8; for comparison,
treewidth of a Chimera Cm graph is 4m.

• Binary quadratic models. Heuristic optimization and inference on Zephyr topology
problems is difficult to accelerate by decomposition heuristics such as the HFS method,
reflecting the greater complexity of patterns amongst the native spin degrees of free-
dom.
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