
Hybrid Solver for Constrained Quadratic Models

WHITEPAPER

Summary

This whitepaper presents an overview introduction to the
constrained quadratic model (CQM) solver, the newest ad-
dition to D-Wave’s hybrid solver service (HSS). The CQM
solver provides a convenient notation for modeling con-
straints, which greatly expands the variety of optimization
problems that fall within scope of the HSS. A small perfor-
mance comparison of the BQM, DQM, and CQM solvers in
the HSS highlights the importance of choosing the right tool
for the job at hand. Like all solvers in the HSS, CQM inte-
grates both quantum and classical solution methods, lever-
aging the best features of both to achieve faster conver-
gence to better solutions on some problems.

1 Introduction
D-Wave’s hybrid solver service (HSS) contains a portfo-
lio of heuristic solvers that leverage quantum and clas-
sical methods to solve problems much larger than can
fit on Advantage™ quantum systems.

To date, the HSS has held solvers for two problem
types: the binary quadratic model (BQM) solver for
problems defined on binary values (0,1); and the dis-
crete quadratic model (DQM) solver for problems on
nonbinary values (such as red, orange, yellow, green).

This report describes the newest member of the HSS,
a solver for constrained quadratic models (CQMs): this
solver can represent problems defined on binary and
integer variables, and it offers a convenient notation for

BQM

DQM

CQM

Figure 1: Increasing scope of solvers in the HSS.

expressing problem constraints. Here is an overview.

• As illustrated in Figure 1, the CQM solver is a con-
tinuation of D-Wave’s efforts to expand the space
of optimization problems that fall within scope of
the HSS. Section 2 illustrates the types of applica-
tions that can be formulated using each solver.

• Section 3 presents a small performance compari-
son highlighting the benefits of choosing the right
tool for the job at hand. In our tests, the BQM
solver performed best on unconstrained binary
problems. The DQM and CQM solvers were more
efficient on nonbinary problems, with CQM domi-
nating on constrained nonbinary problems.

• Like its companions in the HSS, the CQM solver
implements a classical front-end that works in
tandem with a quantum back-end, an Advantage
quantum system. Section 4 describes this arrange-
ment and shows how the hybrid workflow can ex-

14-1055A-A D-Wave Whitepaper Series 2021-10-01



hibit superior performance compared to a purely
classical workflow.

The hybrid solver service is cloud-based and offered by
subscription via the Leap™ web portal; see [1] to learn
more about Leap and [2] for more about Leap’s hybrid
solver service.

For developers who prefer to implement their own
approaches to hybrid quantum-classical computation,
D-Wave offers dwave-hybrid, an open-source Python
framework with tool support for building and test-
ing hybrid workflows, which interfaces with D-Wave’s
quantum annealing processors; visit [3] to learn more.

2 Quadratic Models for
Real-World Problems

The binary quadratic formulation used by the BQM
solver (which is native to all D-Wave quantum proces-
sors) arises naturally in many application areas; a sim-
ple example is presented in the next section.

More generally, however, many problems must first be
translated to this binary formulation for direct solution
on the quantum hardware. Researchers have built up
a large “cookbook” of suitable problem translations:
see [4] to learn about more than 250 applications that
have been demonstrated to run on D-Wave platforms.
In principle, any NP-hard problem can be efficiently
translated to a BQM; but in practice it can be challeng-
ing to come up with an efficient translation, in the sense
that solver performance can depend critically on trans-
lation quality.

The DQM and CQM solvers are part of an outreach ef-
fort by D-Wave developers to expand the scope of prob-
lems that can be modeled directly within the HSS, with-
out requiring further translation to BQMs. This effort
both lowers barriers to use and can sometimes produce
better performance. To illustrate this point, the types
of problem formulations — called models — that each
solver supports are illustrated below.

Binary Quadratic Models We start with a simple BQM
represented by a graph G, as shown in Figure 2 (a). The
nodes of G are variables, and the edges represent re-
lationships between pairs of variables. This is a binary

problem because the nodes can be assigned one of two
values, in this example either 0 (teal) or 1 (orange).

A BQM input has real-valued weights, called biases,
that may be attached to the nodes and edges of G. An
edge bias expresses a preference for certain value as-
signments on its endpoint nodes. In Figure 2 (a), a solid
edge indicates a preference for same values (0,0) or (1,1)
on the endpoints, and a dotted edge indicates a pref-
erence for different values (1,0) or (0,1). In this exam-
ple, the length of an edge corresponds to a stronger
(shorter) or weaker (longer) preference. For simplicity
we assume here that all node biases are set to zero, in-
dicating no preference.

In a solution that assigns values to nodes, we say an
edge is satisfied if its endpoints match its preference,
otherwise the edge is frustrated. Each possible solution
has a quality score S, equal to the (positive) sum of bi-
ases on satisfied nodes and edges, plus the (negative)
sum of biases on frustrated nodes and edges. The com-
putational task is to find an assignment of binary val-
ues to nodes that maximizes this quality score.

For example, suppose the edge biases represent
friendly (solid) and hostile (dotted) relationships
among citizens of Verona in the 1300s. The computa-
tional problem is to assign every citizen to one of two
social groups — the Montagues (0, teal) or the Capulets
(1, orange) — to maximize the score S as defined above.
Figure 2 (a) shows one possible assignment of citizens
to these two groups.

Note that it may not be possible to find an assignment
that satisfies every edge in the graph. For example,
Juliet is friendly with both Romeo and her father, but
Romeo and Lord Capulet have a hostile relationship:
no assignment of binary values to this triangle can sat-
isfy all three edges. For another example, Mercutio has
a hostile relationship with both groups,1 so some edges
must be frustrated no matter which group is assigned
to him.

In the field of social network analysis, the number of
frustrated edges in an optimal solution is a measure
of structural imbalance in the network. Structural im-
balance is associated with the potential for unrest and
clashes within a given social group: see [5] to learn
more.

1“A plague o’ both your houses!”

Copyright © D-Wave Systems Inc. Constrained Quadratic Model Solver 2



(a) BQM (b) DQM (c) CQM

Figure 2: (a) A solution to a BQM problem with two-valued variables (teal and orange). (b) A solution to a DQM problem with
four values assigned to variables (orange, teal, purple, blue). (c) A solution to a CQM problem defined on binary and integer
values with multiple constraints.

Discrete Quadratic Models In DQM formulations,
nodes can be assigned many values, not just two.
For example, suppose that Figure 2 (b) represents a
social network modeling four social groups located
in Verona and Florence: Capulet (orange), Montague
(teal), Medici (purple), and Albizzi (blue).

The four values are called cases. The DQM solver sup-
ports models in which lists of allowed cases can be at-
tached to each node, and allowed pairs of cases can be
attached to each edge. Restrictions of these lists can be
used to define rules about forbidden assignments or
combinations, for example:

1. The two nodes at upper right can only be assigned
to Medici or Albizzi.

2. No edge can have the combination (Capulet,
Medici) on its endpoints.

Rules of this type, called constraints, are used to define
infeasible solutions, which are considered invalid and
must be discarded. Note that the solution in Figure 2
(b) contains one violation of constraint 2, and is there-
fore infeasible.

In unconstrained problems, all solutions are feasible;
in constrained problems some solutions are considered
infeasible. The computational problem is to find the op-
timal feasible solution as defined by the quality score S.

Constrained Quadratic Problems The CQM solver
can model problems defined on binary and integer val-
ues. Furthermore, the CQM solver provides direct sup-
port for expressing a variety of constraints, including
constraints that are expressed arithmetically. This rep-
resents a significant expansion of modeling power over
the BQM and DQM solvers.

For example, suppose Figure 2 (c) describes a city con-
taining a river (blue line) and a duomo (green square).
The social network also contains two square nodes
that are not directly connected. Integer values assigned
to the nodes correspond to lighter and darker shades
within each color group: Capulet (oranges [1..10]),
Montague (teals [11...20]), Medici (purples [21..30]),
and Albizzi (blues [31..40]), perhaps representing se-
niority levels within a group.

Here are some examples of constraints — involving
both sums of nodes and edges, and sums of integer val-
ues assigned to nodes and edges — that can be mod-
eled using the CQM solver.

1. The square nodes must be assigned to different
groups, with total value greater than 30.

2. The values of the five nodes surrounding the
duomo must sum to exactly 150.

3. The total value assigned to each color group must
be with one of its average (5.5, 15.5, 25.5, 35.5).

Copyright © D-Wave Systems Inc. Constrained Quadratic Model Solver 3



4. Exactly nine edges across the river must have
same-colored endpoints.

The toy problems described in this section are intended
to illustrate the progressively more powerful modeling
capabilities of the DQM and CQM solvers compared to
the original BQM solver. However, the HSS is not de-
signed to solve toy problems, but rather to tackle con-
strained optimization problems of industrially-relevant
complexity and size. Table 1 summarizes the features,
problem types, and inputs supported by each solver,
with annotations and details in the caption.

3 Performance Comparison
In addition to greater ease-of-use and modeling power,
the performance of CQM in comparison to its compan-
ions BQM and DQM, is also of interest: which is the
best choice for tackling the job at hand?

For an apples-to-apples performance comparison, we
use problems that can be easily translated to run on all
three solvers. As a general rule, translating a problem
“downstream” from BQM to DQM to CQM is straight-
forward, since their variable domains are increasingly
general. However, reformulating problems “upstream”
from CQM to DQM to BQM can be prohibitively com-
plicated.

To address this issue we have selected three problems
that are simple enough to allow easy translation both
upstream and downstream: note that this means the
problems selected do not fully exercise the expressive
power of the CQM solver.

Each problem in our test set is most naturally repre-
sented by one specific HSS solver, as follows:

• The BQM problem set comprises 15 inputs from
the MQLib problem repository of Max Cut and
QUBO inputs [6]. These unconstrained binary in-
puts represent a variety of application domains
and have sizes N ∈ [1200, 2500].

• The DQM problem set consists of 15 inputs from
the DIMACS Graph Coloring problem repository
[7]. The graph coloring problem is to assign a set
of colors to nodes of a graph, so that no two edge
endpoints have the same color, in a way that min-
imizes the total number of colors used. These in-

puts come from a variety of applications and have
sizes N ∈ [74, 561].

• CQM problems consist of 15 randomly generated
inputs for the traveling salesperson problem (TSP).
The TSP problem is to assign “visit times” to
nodes in a graph to minimize the total weight of
edges between successively-visited nodes, under
the constraints that each node is visited exactly
once and that each time slot is assigned to exactly
one node. These inputs have sizes N ∈ [35, 63], and
uniform edge weights in range [1, 2N].

As a side-note, these problems illustrate a general ob-
servation that increasing the range of values assigned
to variables (from binary to discrete to integer) tends
to produce more compact problem representations, so
that fewer variables are needed to express problems of
similar complexity.

In all tests we record the best solution returned by each
solver within a five-minute time limit; as currently de-
ployed, the BQM solver always returns a single solu-
tion, while the DQM and CQM solvers may return mul-
tiple solutions, depending on input properties and in-
ternal configurations.

For each input, let Sbest be the best solution score found
among all solvers, let Sworst be the worst score over all,
and let S denote the best score found by a given solver
on this input. Let the error distance ∆(x, y) denote the
positive distance between two scores, accounting for
possible sign differences. The relative error is the scaled
error distance, R = ∆(Sbest, S)/∆(Sbest, Sworst).

Figure 3 shows the results. The y-axis shows relative
errors for each inputs, and the x-axis marks results for
three solvers in each of three input categories. Each
boxplot summarizes the distribution of 15 data points,
corresponding to relative errors observed over 15 in-
puts for this problem and this solver. The area between
box endpoints corresponds to the middle 50 percent of
the distribution, horizontal lines within the boxes cor-
respond to medians, and lines and individual points
outside the boxes show distribution tails and outliers.
Here are some observations.

• MQLib. The three left boxes compare solver per-
formance on MQLib inputs, which are most nat-
urally expressed as BQMs. Not surprisingly the
BQM solver (blue) shows best performance, with

Copyright © D-Wave Systems Inc. Constrained Quadratic Model Solver 4



BQM DQM CQM
Objective Function linear & linear & linear &

quadratic quadratic quadratic
Variable Type binary discrete binary & integer

Max Values per Variable 2 65,000 2, ±253 [1]
Constraint via penalties case restriction [2] variable bounds

Representation via penalties linear & quadratic equality
linear & quadratic inequality

via penalties
Max Variables [3] 1 million 5,000 5,000 (nonbulk) [4]

500,000 (bulk)
Max Constraints – – 100,000
Max Biases [5] 200 million 3 billion (nonbulk) 750 million (nonbulk)

5 billion (bulk) 2 billion (bulk)

Table 1: Solvers in the HSS portfolio provide support for ever-broader categories of problems. Notes: [1] Integers are represented
as dimod.INTEGER variable types. [2] The BQM solver uses case restriction for constraints involving forbidden combinations of
values assigned to variables or pairs of variables. [3] In BQM and CQM solvers, the maximum number of variables is also
limited by the maximum number of biases; see the documentation for details. [4] The user can select regular (nonbulk) service
for low latency and high throughput on smaller jobs that need real-time response, or bulk service for higher latency and lower
throughput on larger jobs that can tolerate start-up delays. [5] For BQM and CQM solvers the number of biases is the number
of nonzero weights on all nodes and edges of the input graph; for DQM this is the number of all nonzero weights on all cases
assigned to nodes and edges.

BQM
(MQLib)

DQM
(Graph Coloring)

 CQM
(TSP)

010 8

10 6

10 4

10 2

100

Re
la

tiv
e 

Er
ro

r

BQM Solver
DQM Solver
CQM Solver

Figure 3: Performance of BQM vs DQM vs CQM on three problem sets. MQLib problems are naturally expressed as BQMs,
graph coloring problems are naturally expressed as DQMs, and TSP problems are naturally expressed as CQMs.

Copyright © D-Wave Systems Inc. Constrained Quadratic Model Solver 5



����
user

-�

BQM
DQM
CQM

Solution

solver
�
�
�
��

-

@
@
@
@R

�
�

�
�	
�

@
@

@
@I

heuristic

heuristic

heuristic

QM

QM

QM

@
@
@
@R
-

�
�
�
��

@
@

@
@I

�

�
�

�
�	

QPU

Figure 4: Structure of a hybrid solver in HSS. The front end (blue) reads an input Q and optionally a time limit T. It invokes
some number of heuristic solvers (threads) that run on classical CPUs and GPUs (teal) and search for good-quality solutions
to Q. Each heuristic solver contains a quantum module (QM) that formulates and sends quantum queries to a D-Wave QPU
(orange); QPU responses to these queries may be used to guide the heuristic search or to improve the quality of a current pool of
solutions. Before time limit T, the heuristic solvers send their results to the portfolio front end, which (e.g.) removes duplicates
and forwards a subset of solutions to the user.

median relative error R = 0, meaning BQM found
best solutions on over half its inputs. The DQM
(orange) and CQM (teal) solvers are able to solve at
least a few inputs well (R = 0), but median relative
errors are near R = 0.1 and R = 0.01, respectively.

• Graph Coloring. The three center boxes compare
performance on graph coloring problems which
are naturally expressed as DQMs. On these dis-
crete problems the BQM solver shows worst per-
formance of the three. The DQM solver is able to
find good results in some problems; but the more
recent CQM solver, which incorporates new code
speedups for both discrete and constrained prob-
lems, shows best performance, returning R = 0 on
all but two inputs.

• TSP. The three rightmost bars compare solver
performance on TSP inputs. Here we see signif-
icant performance improvements from the CQM
solver. Although all three solvers were able to
find feasible solutions to these problems, the abil-
ity to directly represent constraints means that the
CQM solver does a better job of avoiding time-
consuming exploration of the infeasible problem
space.

This test shows the importance of choosing the right

solver for the task at hand. The BQM solver shows
best performance on unconstrained binary problems,
while DQM and (especially) CQM outperform it on dis-
crete and integer problems. The CQM solver is the best
choice for both representing and solving constrained
optimization problems.

4 Hybrid Work�ows
Every solver in the HSS portfolio incorporates a hy-
brid quantum-classical workflow, as shown in Figure 4.
Each solver has a classical front end that reads an input
Q and (optionally) a time limit T.2 It then invokes one
or more hybrid heuristic solvers (computation threads),
to search for good-quality solutions to Q.

The heuristic solvers run in parallel on state-of-the-art
CPU and/or GPU platforms provided by Amazon Web
Services (AWS). Each contains a classical heuristic mod-
ule that explores the solution space, and a quantum mod-
ule (QM), which formulates quantum queries that are
sent to a back-end Advantage QPU. Replies from the
QPU are used to guide the heuristic module toward
more promising areas of the search space, or to find im-

2If none is provided by the user, a default time that depends on
input size is used.

Copyright © D-Wave Systems Inc. Constrained Quadratic Model Solver 6



provements to existing solutions. Each heuristic sends
its best solutions to the front end before the time limit is
reached, and the front end forwards best results to the
user.

Accelerating Convergence to Better-Quality Solutions
This arrangement of classical and quantum solvers
working in tandem makes possible a phenomenon il-
lustrated in Figure 5, from tests using the CQM solver.

Internal versions of HSS solvers3 can operate in two
modes, called workflows: in the hybrid workflow (or-
ange) the QM module is active; in the heuristic work-
flow (blue) the QM module is disabled and the classi-
cal heuristic works alone. Note that for reasons of effi-
ciency, the heuristic workflow option is not available in
HSS solvers that are deployed for public use.

The three panels correspond to three individual inputs.
The y-axis corresponds to relative errors observed, at
time limits T between 3 seconds and 3000 seconds (50
minutes), marked on the x-axis. The boxplots summa-
rize sampled relative errors over 75 independent trials
for each workflow and each time limit.

In all panels we observe a general property of optimiza-
tion heuristics, that solution quality tends to improve as
computation time grows. We also note that the hybrid
workflow converges more quickly to better results, re-
turning better solutions at some time limits: we call this
phenomenon hybrid acceleration.

The nature of hybrid acceleration varies from input
to input. For example the top panel shows small but
steady differences in solution quality over the range of
sampled times, while the bottom panel shows signifi-
cant acceleration around T = 30 seconds, that disap-
pears by T = 300 seconds. As a general rule, hybrid ac-
celeration cannot be observed at higher T, when both
workflows have had enough time to converge to the
same (presumably optimal) solutions.

Like its companions in the HSS, the CQM solver is de-

3These tests were carried out using a “laboratory” version of the
CQM solver, which runs single-threaded on a single platform. In con-
trast, the HSS production solvers available to the public are deployed
for multi-threaded use in the cloud. For reasons of efficiency they
do not offer the heuristic workflow option to users; as well, accurate
runtime control and reporting is problematic. For these reasons, the
results of this section may differ somewhat from those observed in
deployed systems, though we expect that latter to be generally more
efficient.

Figure 5: Hybrid workflows sampled at different time limits
T can exhibit hybrid acceleration, converging to better solutions
faster than purely classical workflows.

Copyright © D-Wave Systems Inc. Constrained Quadratic Model Solver 7



signed in such a way that the QPU always has a chance
to accelerate convergence in this way. This does not
necessarily mean that acceleration always occurs: some
inputs are easy enough to be solved heuristically with-
out needing a quantum boost, and some inputs may
have complex structures that resist acceleration.

5 Remarks
This report introduces a new CQM solver for con-
strained quadratic models to D-Wave’s hybrid solver
portfolio. The CQM solver can model problems defined
on integer variables, and offers an easy-to-use inter-
face that supports direct representation of problem con-
straints. These capabilities bring a much larger region
of the constrained optimization problem space within
scope of the HSS.

Because CQM is able to represent constraints explicitly,
it tends to be more efficient than its companions at find-
ing good-quality feasible solutions to constrained prob-
lems. However, unconstrained binary problems can be
more efficiently solved by the BQM solver.

Like its companions in HSS, the CQM solver incor-
porates queries to an Advantage quantum processor
working as a back-end query processor. This combina-
tion of classical and quantum solution methods work-
ing in tandem can exhibit a phenomenon known as hy-
brid acceleration, whereby the hybrid workflow can find
better solutions faster than a purely classical workflow.

References
[1] Visit cloud.dwavesys.com/leap.

[2] Visit docs.ocean.dwavesys.com. Search terms: Using
Leap’s Hybrid Solvers.

[3] Visit docs.ocean.dwavesys.com. Search terms: Ocean
Software: Ocean documentation: dwave-hybrid.

[4] Visit dwavesys.com/learn/featured-applications.

[5] Visit docs.ocean.dwavesys.com. Search terms: struc-
tural imbalance.

[6] Dunning et al., What works best when? A
systematic evaluation of heuristics for Max-Cut

and QUBO, Informs Journal on Computing, 15
Oct. 2018. Inputs may be downloaded from
github.com/MQLib/MQLib.

[7] D. S. Johnson and M. A. Trick, Cliques,
Coloring, and Satisfiability: Second DI-
MACS Implementation Challenge, Oct. 11,
1993. Inputs may be downloaded from
mat.tepper.cmu.edu/COLOR/instances.html.

Copyright © D-Wave Systems Inc. Constrained Quadratic Model Solver 8


	Introduction
	Quadratic Models for Real-World Problems
	Performance Comparison
	Hybrid Workflows
	Remarks

