EERVY IV

The Quantum Computing Companym™

Hybrid Solver for Discrete Quadratic Models

Summary

The discrete quadratic model (DQM) solver, a new mem-
ber of D-Wave’s hybrid solver service (HSS), is introduced.
In contrast to binary quadratic model (BQM) solvers that
read problems defined on two output values (0,1), the DQM
solver can read problems defined on discrete sets of output
values, such as (A...Z).

1 Introduction

D-Wave’s hybrid solver service (HSS) contains a col-
lection of heuristic solvers that combine quantum and
classical methods to solve problems much larger than
can fit on current-generation Advantage™ quantum
computers. To date, all of the solvers in HSS work
on binary problems, with variables that can be as-
signed one of two output values, e.g. {0,1}. Inputs for
these solvers use standard format known as a binary
quadratic model (BQM).

This report introduces a new member of HSS, a portfo-
lio solver for discrete quadratic models! (DQMs). DQMs
generalize BQMs by allowing variables to be assigned
more than two values.

Figure 1 illustrates the difference using a graph par-
titioning problem: given a graph G and an integer &,
partition the nodes of G into k equal-sized groups to
minimize the total weight of edges between different

For search engine purposes the official name of this solver is
hybrid_discrete_quadratic_model_versionl.

® @
° e 'y Py
r ° 2l .
o w
. e bd -« .
R S
S Ve e, Y
AV ® e ¥
s > i 5 ,
\ o 2 | ps »
- =N L s
© o © ool)
e ‘e o e
¥ e, ,u/‘_:»._.,.o v] .;*«;. ¥
- e
.53. . / r'*,, \
L 5 v L4 ¥

Figure 1: Left: A solution to a binary graph partitioning prob-
lem with k = 2. Right: a solution to a discrete graph partition-
ing problem with k = 4.

groups.” The graph on the left shows a binary version
of the problem with k = 2; the graph on the right shows
a discrete version with k = 4.

Several real-world applications based on graph parti-
tioning have been implemented on D-Wave QPUs and
hybrid solvers, including: modeling molecular struc-
tures [1, 2], analyzing social networks [3, 4], and de-
veloping statistical clustering methods [5].

In these and similar cases, discrete problems have been
formulated as BOM inputs for the quadratic uncon-
strained binary optimization (QUBO) problem, for ex-
ample using a string of k binary variables to represent
one discrete variable taking k values, such as 0001, 0010,
0100, 1000 to represent k = 4 (additional constraints are
needed to ensure that invalid patterns such as 0110 are
suppressed). The DQM formulation removes this ne-

2We assume here that the weight on each edge is proportional to
its length in the figure, and that the number of nodes is a multiple of
k. The example solutions shown are not necessarily optimal.

14-1050A-A

D-Wave Whitepaper Series

2020-10-07

cessity: instead, DQM solvers are designed to read in-
puts for the quadratic unconstrained discrete optimiza-
tion problem (QUDO), and to directly explore the dis-
crete solution space, with invalid bit patterns omitted.
Furthermore:

1. DQM solvers can read discrete problems with up
to 5,000 nodes and 10,000 groups per node, up to a
maximum of 2 billion total input weights. Section
2 shows how DQM problems are formulated.

2. Like all hybrid solvers in HSS, DQM solvers have
the capability to leverage queries to the Advan-
tage quantum processing unit (QPU), to acceler-
ate convergence to good-quality solutions. Section
3 demonstrates this phenomenon.

We believe these benefits of greater convenience in
problem formulation, high input capacity, and hybrid
acceleration will further broaden the scope of usability
for the hybrid solvers in HSS.

The next section presents a simple example to illustrate
how any QUDO input can be formulated as a DQM.
Section 3 gives an overview of hybrid solver structure
and demonstrates that DOM solvers can exhibit hybrid
acceleration.

2 Formulating a DQM

Given a graph G containing n nodes and m edges, the
graph coloring problem is to find a valid assignment of
colors to nodes that uses a minimum number of differ-
ent colors: in a valid coloring, no two nodes sharing an
edge can have the same color. Real world applications
of graph coloring include:

* Radio frequency assignment. The colors corre-
spond to radio frequency channels, and the prob-
lem is to assign a minimum number of channels
to mobile transmitters, so that any pair of trans-
mitters within a certain threshold distance are as-
signed different channels.

¢ Scheduling . The colors correspond to gates in an
airline terminal. The problem is to assign a min-
imum number of gates to scheduled flights such
that no two flights on the ground at the same time
are assigned the same gate.

Figure 2: A graph coloring problem with n = 30 nodes and
m = 186 edges. This solution uses c = 8 colors.

¢ Timetabling. The colors correspond to final exam
time slots: the problem is to assign exam times to
courses such that any pair of courses with at least
one student attending both must be assigned dif-
ferent times.

Graph coloring problems have been implemented on
D-Wave QPUs and hybrid solvers [6-9]; however, as
with graph partitioning, this previous work has been
based on BQMs.

Figure 2 shows an example solution for a graph G with
n = 30 nodes and m = 186 edges. The node de-
gree d is the highest number of edges per node: here
d = 17, with the orange node near the center. Let c de-
note the number of different colors used in the solution.
Although it is always possible to color a graph using
¢ = d + 1 colors, the figure shows a better solution us-
ing just ¢ = 8 colors. (Finding an even better coloring is
left as an exercise for the reader.)

This problem can be formulated as a DQM using tools
in D-Wave’s Ocean developers’ toolkit. Starting with
an instantiated dgm object, our example input is con-
structed as follows (see [dw-dqm-docs, dw-dqm] for
details and more examples).

Nodes. Use dgm.add_variables to create the n = 30
nodes.

Cases. The color values that can be assigned to nodes

Copyright © D-Wave Systems Inc.

Hybrid Solver for Discrete Quadratic Models 2

(i.e., variables) are called cases. Since ¢ < 18 we
represent colors using integers [1...18]. There are
540 = 30 x 18 possible combinations of nodes
and colors. (The DQM format allows cases to be
customized to individual variables, e.g. restricting
node x to just [red, green, blue], but this option is
not pursued here.)

Edges. Use dgm.add_quadratics to specify the edges
and cases. The number of quadratic terms in the
problem is the total number of edges m, multiplied
by number of possible combinations of cases on its
two endpoints.

Biases. A bias is a numerical value assigned to a node
or edge in the DQM; all biases are set to 0 by de-
fault but can be modified as needed.

Some biases come from the problem definition,
such as the edge weights in the graph partition-
ing example of Section 1. The basic graph color-
ing problem does not have weights, but variations
might: for example, each node x could be weighted
according to its density dy, and the goal could be
to find a coloring to minimize the weighted sum
of color assignments W =), dyc (this variation is
not further pursued).

In addition, a bias can be a numerical penalty as-
signed to certain combinations of cases, nodes and
edges, to discourage their appearance in output so-
lutions. Since HSS solvers look for minimum-cost
solutions, penalties should be positive numbers.
Graph coloring requires two types of biases:

¢ Since a valid coloring requires that no two
nodes joined by the same edge have the same
color, we assign quadratic biases to discourage
this event. Suppose the penalty is P (consid-
erations in choosing penalty values are dis-
cussed below). Use set_quadratic to assign
Pquad to quadratic terms corresponding to a
violation of this constraint; there is one such
term for each edge (x,y) and each color c.

¢ To minimize the total number of different col-
ors assigned to nodes, we use linear biases on
nodes to discourage assignments of higher-
numbered colors and thus encourage solu-
tions with a concentration of lower-numbered
colors. For each node n and each color ¢, use
set_linear to assign a penalty such as pj;,, =
c? to the combination (7, c).

Max number of variables #n: 5000
Max number of cases per variable: 10,000
Max biases: 2 billion

Table 1: Input parameter bounds for current-generation
DQMs.

Once formulated, the DQM input can be submitted to
the DQM solver in HSS. Table 1 shows size and param-
eter limits for current-generation DQM solvers. The to-
tal input size corresponds to the total number of lin-
ear plus quadratic biases in the problem: in addition to
these individual limits, the total input size cannot ex-
ceed two billion biases.

Choosing penalties. The choice of suitable penalties
and penalty functions when formulating optimization
problems for heuristic solvers is a perennial (i.e un-
solved) topic in optimization research [12, 13]. A few
guidelines are very briefly discussed here.

First note that the quadratic biases are used to enforce
a hard constraint, so-called because solutions that vio-
late this constraint are invalid and must be discarded.
The linear biases enforces a soft constraint, in the sense
that fewer colors are preferred but the number of col-
ors used does not determine validity. As a general rule,
penalties for hard constraints should be set higher than
those for soft constraints, to ensure that output solu-
tions are valid.

Penalties on the soft constraints could be set lower or
higher, for example using pj;, = c or p;, = c>. Set-
ting stronger penalties can accelerate the discovery of
better-quality solutions; but on the other hand, setting
penalties too high tends to break the solution space
into disconnected regions and inhibit exploration over
the full space of possibilities. General advice about
penalty-setting for DQMs and BQMs may be found in
D-Wave documentation and the Leap Community dis-
cussion boards [dw-examples, 15].

An alternative approach in this case is to omit the soft
constraints and instead use iterative tests with varying
values of c. That is, instead of building just one input
that encourages few colors in the output, create a se-
ries of inputs with hard limits ¢ € [3,4,...d + 1] and
send them to the DQM solver one-by-one, until a valid
coloring is found. This removes the need to search for
a suitable penalty function but adds more time to test

Copyright © D-Wave Systems Inc.

Hybrid Solver for Discrete Quadratic Models 3

QUDO .
portfolio
Solution solver

user

Qru

Figure 3: Structure of a portfolio solver in HSS. The portfolio front end (blue) reads an input Q formulated as a quadratic
unconstrained discrete optimization problem (QUDO), and optionally at time limit T. It invokes some number of hybrid solvers
running on classical CPUs and GPUs (teal), to find solutions to Q. The hybrid solvers contain a quantum module (QM) that
formulates and sends quantum queries to a D-Wave quantum processor (orange). At time limit T, the hybrid solvers send their
results to the portfolio front end, which forwards solutions to the user.

different values of c.

3 DQM solver features

Once formulated, a DQM input can be submitted to
the DQM portfolio solver in HSS. This section presents
a brief summary of structure and solver workflows
for all HSS solvers, and shows how the hybrid ap-
proach can outperform a purely classical version of the
same solver; for more about general properties of HSS
solvers see [16].

Figure 3 shows the overall structure of HSS. HSS con-
tains a collection of portfolio solvers, which read user in-
puts and (optionally) a time limit,® and then invoke one
or more hybrid solvers to work in finding good quality
solutions to the input. Current versions of HSS contain
two types of portfolio solvers, which accept either bi-
nary inputs or discrete inputs.

The discrete hybrid solvers in the HSS portfolio run in
parallel on a collection of CPU and/or GPU platforms
provided by Amazon Web Services (AWS). Each hybrid
solver contains an implementation of a classical heuris-
tic that explores the discrete solution space defined by
the input, together with a quantum module (QM) that
formulates some number of quantum queries that are
sent to an Advantage QPU. Replies are used to guide
the classical heuristic toward more promising areas of
the search space. Each hybrid solver sends its best so-
lutions to the portfolio solver before the time limit is

3A default lower bound time limit depending on input size may
be used instead.

Panel Linear Biases Quadratic Biases
top 18,336 226,560
center 29,072 618,728
bottom 56,100 162,800

Table 2: Number of DQM biases for the three inputs in Figure
4.

reached, and the portfolio front end forwards the solu-
tions to the user.

Hybrid acceleration All of the hybrid solvers in the
HSS contain a QM that sends quantum queries to a
D-Wave QPU standing online, currently either a D-
Wave 2000Q or an Advantage system. The QM receives
replies and formulates those replies into suggestions
for the classical solver component about promising re-
gions of the search space to explore next. (Note that
technically the QM may also be considered hybrid be-
cause it uses classical code to carry out such tasks as
formulating queries, and selecting replies to be mapped
to their heuristic components.)

This arrangement makes possible a phenomenon we
call hybrid acceleration, illustrated in Figure 4. Internal
versions of HSS solvers can operate in two modes,
called workflows: in the hybrid workflow (blue) the QM
module is active; in the heuristic workflow (orange)
the QM module is disabled and the classical heuristic
works alone.*

The three panels show results for three input graphs

4For reasons of efficiency and interface simplicity, choice of work-
flow mode is not supported in HSS solvers available to the public.

Copyright © D-Wave Systems Inc.

Hybrid Solver for Discrete Quadratic Models 4

1.0 —— With Hybrid Workflow
Without Hybrid Workflow
3os{ I
9]
C
w
© 0.6
=}
S
%)
& 0.4
el
Q
3 0.2
0.0 A
102 10°
Time (s)
1.04
30.8
9]
C
w
© 0.6
3 —— With Hybrid Workflow
'g Without Hybrid Workflow
o 0.4
el
Q
302{ =
0.0
102 10°
Time (s)
1.0
>
0.8
9]
c
w
© 0.6
_g —— With Hybrid Workflow
'g Without Hybrid Workflow
e 0.4
kel
Q
3 0.2
- e—
0.0
10! 102 10°
Time (s)

Figure 4: Burndown charts

of sizes shown in Table 2. The y axis marks solution
quality returned by each workflow, as measured by
problem biases (i.e. penalties), scaled to the largest and
smallest values observed in the presented data.

The x axis in each panel shows a range of computation
times, from the default lower limit determined by input
size, to an upper limit of 20 minutes (1200 seconds). For
each input, solution quality is sampled at several points
t within these time limits, using three independent tri-
als for each workflow.

For each t and each trial, the DQM solver returns a sam-
ple of s solutions, where s is determined by internal
solver configuration, typically s € [1,...,50]. We filter
the full sample by recording the five best solutions, for
a total of 15 sampled solutions for each t; then at each
t we record the best 15 solutions found so far. The or-
ange and blue lines show how median solution quality
improves over time, and the shaded regions show the
range of solution quality found in these filtered sam-
ples.

In each panel we can observe a general property of op-
timization heuristics, that solution quality tends to im-
prove over time. We also observe that the hybrid work-
flow (blue), with the QM activated, shows faster con-
vergence to better solutions than the heuristic work-
flow (orange) with the QM disabled. We call this phe-
nomenon hybrid acceleration.

Like all solvers in the HSS portfolio, the DQM solver
is designed in such a way that the QPU always has a
chance to contribute to the solution search. This does
not necessarily imply that hybrid acceleration occurs
with every input sent to the QPU: some inputs are
easy enough to be solved classically without needing
a quantum boost, and some inputs may contain com-
plexities that cannot be captured by the QM. As well,
the nature and timing of this acceleration varies from
input to input: for example the top panel shows rel-
atively small differences in solution quality over the
range of measured runtimes, while the bottom panel
shows that acceleration has taken place sometime be-
fore the lower-bound time limit set for this problem.

4 Conclusions

This report introduces a new solver in D-Wave’s hy-
brid solver portfolio, which reads discrete rather than

Copyright © D-Wave Systems Inc.

Hybrid Solver for Discrete Quadratic Models 5

binary inputs, formulated as DQMs. A small exam-
ple showing how to formulate DQMs is presented,
together with an overview of solver structure and a
demonstration that the DQM solver can exhibit hybrid
acceleration: that is, the Advantage QPU can make pos-
itive contributions to the quality of solutions obtained.

References

12

13

15

16

Djidjev et al., “Graph partitioning using quantum annealing
on the D-Wave system,” PMES’17 (2017).

H. Ushijima-Mwesigwa et al, “Graph partitioning
using quantum annealing on the D-Wave system,”
arXiv:1705.03082.

C. Negre et al., “Detecting multiple communities using quan-
tum annealing on the D-Wave System,” arXiv:1901.09756.

J. Ambrosiano et al., Using the D-Wave 2X quantum computer to
explore the formulation of global terrorist networks (LANL Tech-
nical Report LA-UR-17-23946, 2017).

F. Neukart et al., “Quantum assisted cluster analysis,”
arXiv:1803.02886.

A. Wieckowsky et al., “Disorder-assisted graph coloring on
quantum annealers,” Phys. Rev. A 100 (2019).

M. Dineen et al., “Finding the chromatic sums of graphs us-
ing a D-Wave quantum annealer,” The Journal of Supercom-
puting 75, 48114828 (2019).

Z. Tabi et al., “Quantum optimization for the graph coloring
problem with space-efficient embedding,” arXiv:2009.0731
(2020).

S. Srivastava and V. Sungaraghavan, “Box algorithm for the
solution of differential equations on a quantum annealer,”
Phys. Rev. A 99 (2019).

K. Bryan and Y. Shibberu, “Penalty functions and con-
strained optimization,” visit http : //www . bioinfo . org.
cn/~dbu/AlgorithmCourses/Lectures/PenaltyFunction.
pdf and https://www.cs.cinvestav.mx/~constraint/
papers/yeniay05.pdf.

O. Yeniay, “Penalty function methods for constrained opti-
mization methods with genetic algorithms,” Mathematical
and Computational Applications 10, 45-56 (2005).

“D-wave leap community,” https://support . dwavesys .
com/hc/en-us/community/topics.

C. McGeoch, P. Farré, and W. Bernoudy, D-Wave Hybrid
Solver Service plus Advantage: Technology Update (D-Wave TR
14-1084A-A, 2020).

Copyright © D-Wave Systems Inc.

Hybrid Solver for Discrete Quadratic Models

6

http://www.bioinfo.org.cn/~dbu/AlgorithmCourses/Lectures/PenaltyFunction.pdf
http://www.bioinfo.org.cn/~dbu/AlgorithmCourses/Lectures/PenaltyFunction.pdf
http://www.bioinfo.org.cn/~dbu/AlgorithmCourses/Lectures/PenaltyFunction.pdf
https://www.cs.cinvestav.mx/~constraint/papers/yeniay05.pdf
https://www.cs.cinvestav.mx/~constraint/papers/yeniay05.pdf
https://support.dwavesys.com/hc/en-us/community/topics
https://support.dwavesys.com/hc/en-us/community/topics

	Introduction
	Formulating a DQM
	DQM solver features
	Conclusions
	References

