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Overview

D-Wave quantum computing systems now allow a user to advance or
delay the annealing path of individual qubits through the anneal o�sets
feature. Here we demonstrate the potential of this feature by using it
in an integer factoring circuit. O�sets allow the user to homogenize
dynamics of various computational elements in the circuit. This gives
a remarkable improvement over baseline performance, in some cases
making the computation more than 1000 times faster.
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Summary
Mapping a boolean circuit or optimization problem onto a D-Wave system typically re-
quires the use of chains; that is, groups of qubits representing the same logical variable.
Chains of different length produce different quantum tunneling dynamics, as longer chains
have a lower effective tunneling energy and may freeze out in a fixed state earlier in the an-
neal. To balance these disparate tunneling dynamics, we can boost the relative tunneling
energy of longer chains by delaying the anneal of their qubits. 2000-qubit D-Wave systems
allow the user to advance or delay the annealing path of individual qubits through the
anneal offsets feature.

Here we review a demonstration of this capability, as applied to the problem of integer
factoring: given an input number p, find integers a and b such that a × b = p. The 1994
formulation of Shor’s algorithm, along with the ubiquity of factoring in cryptographic sys-
tems, makes this a problem of central interest in the context of quantum computing.

One way to factor an integer using quantum annealing is to run a multiplication circuit
backwards. We begin by setting up a minimization problem representing a multiplication
circuit. This circuit has inputs a and b, and output p, and can achieve an optimal state when
a× b = p. If we specify a and b but not p, then the solution to the minimization problem
tells us the value of p. If instead we specify p but not a or b, the solution gives us a and b
such that a× b = p.

Anneal offsets give a remarkable improvement in performance for these problems, in some
cases making the computation more than 1000 times faster. Figure 1 shows performance
of a D-Wave system on a testbed of factoring problems, run both with and without anneal
offsets.
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Figure 1: Performance of a 2000-qubit D-Wave system on integer factoring problems improves dra-
matically when anneal offsets are used. (a) Percentage of instances solved using 250,000 samples per
instance, when factoring 6-, 8-, and 10-bit semiprimes. (b) Time required to find a solution for each
instance.
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1 Anneal o�sets
Ising model quantum annealing can be modeled by the Hamiltonian

H(s) = A(s)H0 + B(s)HP,

which evolves over time s from an initial Hamiltonian H0 = ∑i σ
(i)
x at s = 0 to a final

Hamiltonian HP = ∑i hiσ
(i)
z + ∑i<j Ji,j σ

(i)
z ⊗ σ

(j)
z at s = 1. If the system evolves slowly

enough, it remains in its ground state throughout, and the ground state of HP encodes the
solution to the classical energy minimization problem of the Ising model [h, J]. A typical
schedule for the tunneling energy A(s) and problem energy B(s) is shown in Figure 2(a).
In the 2000-qubit D-Wave system, the default A(s) and B(s) is identical for every qubit.
However, this schedule may be modified on a per-qubit basis, allowing for alternative
schedules that better optimize performance.

By default, the D-Wave schedule is controlled by a global, time-dependent signal c(s) that
simultaneously determines A(s) and B(s). The anneal offsets feature perturbs this signal
at each qubit i by an offset δci, so that the scheduling signal at time s on qubit i is ci(s) =
c(s) + δci. This offset has the effect of giving each qubit its own schedule [Ai(s), Bi(s)],
which may be advanced or delayed from the global schedule [A(s), B(s)], resulting in a
modified Hamiltonian

H(s) = ∑
i

Ai(s)σ
(i)
x + ∑

i
Bi(s)hiσ

(i)
z + ∑

i<j

√
Bi(s)Bj(s)Ji,j σ

(i)
z ⊗ σ

(j)
z . (1)

Figure 2(b) shows the effect of these offsets: if δci > 0, the schedule is advanced, so Ai(s) <
A(s) and Bi(s) > B(s).

While modifying the annealing schedule on a per qubit basis allows a great deal of flex-
ibility for optimization, the perturbation from B(s) to Bi(s) also introduces a new source
of error: the individual h and J terms of the Ising model in (1) are no longer amplified
uniformly during the anneal. This means that the benefits of individual anneal schedules
must be balanced against larger problem misspecification.

1.1 Chain dynamics

One particularly valuable application of the anneal offset feature is homogenizing the dy-
namics of chains. A chain is a collection of qubits intended to act as a single logical spin; to
impose this behavior, we apply a strong ferromagnetic coupling (J = −1) between those
qubits. The length of the chain is the number of qubits in it.

If we impose a chain coupling Jij = −1 between qubits i and j, and express the problem
Hamiltonian at a smaller energy scale, then the Ising model energy is minimized when i
and j take the same spin; therefore we may treat i and j as a single logical qubit, call it
qij. However, at any point in the anneal, the effective tunneling energy of qij is smaller
than that of a single qubit. Intuitively, two qubits are less likely to tunnel simultaneously
than just one in isolation. More precisely, at time s, if the tunneling energy and problem
energy for a single qubit are A(s) and B(s), then the effective tunneling energy of qij is

Copyright © D-Wave Systems Inc.
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Figure 2: Annealing schedules. (a) Typical anneal parameters A(s), B(s). Annealing begins at s = 0
with A(s) � B(s) and ends at s = 1 with A(s) � B(s). (b) Anneal parameters with offsets. The
baseline curve (δci = 0) is shown along with Ai(s), Bi(s) for a qubit that is advanced (δci = 0.05) or
delayed (δci = −0.05).

proportional to √
B(s)2

4
+ A(s)2 − B(s)

2
. (2)

(See [1] for details.) For k > 2 qubits acting as a single logical variable, the effective tunnel-
ing energy is reduced even further.

As a result of reduced tunneling energy, chains suffer from early freeze-out: longer chains
become fixed to a particular spin value earlier in the anneal than shorter chains. This effect
usually has a negative impact on performance. However, anneal offsets can mitigate this
effect: by delaying the anneal for longer chains, their tunneling energy is increased and
brought in line with others.

Using perturbation theory and the particular schedule of the D-Wave system, we can com-
pute the anneal offsets required to synchronize the effective tunneling energy across all
chain lengths at a fixed time s during an anneal (see Appendix A). The delay on an iso-
lated chain of k qubits is reasonably well approximated by a function of the form f (k) =

β
1−k

k − 1, where 0 < β < 1 depends on the time s at which the tunneling energies are
synchronized (see Figure 3).

Copyright © D-Wave Systems Inc.
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Figure 3: Anneal offset delay f (k) = β
1−k

k − 1 as a function of chain length k. Shown is β = log 2.

2 Factoring
As an application to measure the performance benefits of anneal offsets, we consider the
problem of factoring integers. This is a problem whose presumed hardness is the basis
for many cryptographic protocols. While integers can be factored in polynomial time on a
universal quantum computer using Shor’s algorithm [2], no efficient classical algorithm is
known. Our approach (introduced in [3], see also [4, 5]) is completely different from Shor’s
algorithm and offers no guarantee of a solution in polynomial time. It does demonstrate a
way that factoring can be performed on D-Wave systems and is used to test the benefit of
anneal offsets.

We wish to factor an integer p as a product of a pair of n-bit integers a and b. To solve this
problem, we represent a, b, and p in binary and construct a Boolean circuit that performs
n-bit by n-bit multiplication. We then encode the circuit as an optimization objective, so
that input/output bit strings that satisfy the circuit have a known minimum energy (and
all other bit strings have higher energy). Finally, by fixing the output of the circuit to the
binary representation of p and minimizing the resultant optimization objective, we can
obtain the inputs giving the desired output, effectively running the circuit in reverse.

More generally, for any decision problem, we imagine encoding the Boolean circuit that
verifies the answer as either true or false, clamping the output of the circuit to true, and
minimizing. For NP problems this circuit is polynomially sized. (However, factoring a 2n-
bit integer requires θ(n2) qubits: integers of cryptographic interest are beyond the scale of
2000-qubit D-Wave systems.) Clamping may be effected by appropriate local fields acting
on the output bits, or by eliminating the output bits entirely and adding their contributions
to their neighbors.

Copyright © D-Wave Systems Inc.
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Figure 4: Multiplication of two 4-bit integers (a3, a2, a1, a0) and (b3, b2, b1, b0) to form the 8-bit product
(p7, p6, p5, p4, p3, p2, p1, p0).

2.1 Multiplication circuits as constraint satisfaction

Consider the multiplication of two 4-bit integers. Schematically, the product is formed
from the multiplication table given in Figure 4. Any output bit pi is formed as the sum of
appropriate products of the bits of a and b. For example, the first output bit is given by

p0 = a0b0.

This imposes a constraint between inputs a0, b0 and the output p0. This constraint, which
we denote C∧(a0, b0, p0), is the AND gate of digital logic.

To represent a sum of bits, we use digital adders. A half adder, denoted C2A(t, t′, p, c),
is a constraint with inputs t, t′ and outputs s, c (sum and carry), enforcing the constraint
t + t′ = s + 2c. The full adder constraint, denoted C3A(t, t′, t′′, p, c) enforces the constraint
t + t′ + t′′ = p + 2c (see Figure 5 for truth tables). Arranging half and full adders in a
sequence, we can enforce the summation constraints on the output bits p imposed by the
columns of the multiplication table in Figure 4.

A network of constraints representing the full multiplication circuit is shown in Figure 6,
with optimization variables represented as edges. In addition to the variables representing
inputs a and b and outputs p, there are a number of intermediate variables. The si

j and ci
j

variables represent the sum and carry bits from adder constraints respectively, while the
ti,j variables represent the products aibj.

2.2 Constraints as optimization objectives

Having reduced integer factoring to a constraint satisfaction problem, we next reduce con-
straint satisfaction to Ising model optimization.

Given a constraint C(x) defined over a set of Boolean variables x ∈ {0, 1}n, we identify x
with spin variables s = 2x− 1 ∈ {−1, 1}n, and represent C(x) by an Ising model whose
ground states coincide with the feasible configurations of the constraint. Typically, this
requires the use of ancillary variables. We write a spin configuration as z = (s, a), where s
and a are the constraint and ancillary variables respectively, and denote energy of an Ising
model [h, J] at spin configuration z as

E[h,J](z) = hTz + zT Jz.

Copyright © D-Wave Systems Inc.
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Figure 5: Truth tables and Ising penalty models for the (a) AND gate, (b) half adder, and (c) full
adder. Colors shown in (d) identify the different h and J values for each Ising model.

To separate feasible and infeasible solutions in C(x), we require that for some global min-
ima e0 and positive energy gap g:

min
a

E[h,J](s, a) =

{
e0 if C(x) is satisfied (where x = s+1

2 );
≥ e0 + g if C(x) is not satisfied.

The multiplication constraints C∧, C2A, and C3A can be realized as Ising penalty models
P∧, P2A, P3A, as shown in Figure 5. These models, found using the techniques in [6], were
constructed to match the graph structure of the D-Wave system. The available Ising model
interactions form a Chimera graph, consisting of a 2-dimensional grid of interconnected
unit cells, where each unit cell is a K4,4 complete bipartite graph.

After penalty models are defined for all constraints in the circuit, the models are placed
onto disjoint subgraphs of the Chimera graph. Variables may occur in multiple constraints,
but we connect the different instantiations of a variable together using chains. The con-
straints of the multiplication circuit in Figure 6 have a natural grid-like layout; this fits well
with the Chimera grid structure. Figure 7 shows a 3-bit multiplication circuit completely
embedded onto a Chimera graph.

Copyright © D-Wave Systems Inc.
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Figure 6: The constraint network (a) represents the multiplication of two 4-bit numbers. Boxes la-
beled P̃2A and P̃3A in (b) and (c) respectively represent pairs of constraints (an AND gate with a half
adder or full adder).
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Figure 7: A 3-bit multiplication circuit mapped onto D-Wave’s Chimera graph. Constraints circled
in green labeled ∧, 2A, and 3A represent AND, half adder, and full adder respectively. Chains of
logical variables are indicated with thick blue lines. In a working D-Wave system, this embedding is
modified to avoid missing qubits. Input variables (labeled a and b) have chains that span the length
or width of the graph; the slower tunneling dynamics of these chains are mitigated using anneal
offsets.
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Figure 8: Performance of the 2000-qubit D-Wave system using different magnitudes of anneal offsets
for the factoring problem 143 = 11× 13. For each offset magnitude, the D-Wave system was sampled
250, 000 times using 20 µs per anneal. Given a fraction p of returned samples in the ground state,
solution time (shown in seconds) is defined as (20 µs) log(0.99)

log(1−p) ; that is, the time required to generate
a ground state with at least 99% confidence.

3 Results
In this section, we apply the anneal offsets feature to the embedded integer factoring prob-
lems of the previous section, in an attempt to mitigate the issues of chain dynamics.

We consider factoring 2n-bit integers using an n-bit by n-bit multiplication circuit, for each
of n ∈ {3, 4, 5}. For each n, we consider all semiprime factoring problems: that is, we
attempt to factor every integer of the form p = a× b, where a and b are primes of at most n
bits, and p has more than n bits. Semiprimes represent the most difficult factoring problems
because they have the fewest factors.

Rather than attempting to find the optimal offset for each chain in the embedded problem,
we choose a single offset function determined by the chain length.

For chains of length k, we use a delay of f (k) = α
(
(log 2)

1−k
k − 1

)
, where the scaling pa-

rameter α ≥ 0 is determined experimentally. Choosing α = 0 results in no offsets, which
is the default behavior of the system. Varying the magnitude α allows us to balance an
increasing effect from anneal offsets against the increasing error as a result of the perturba-
tions to the Ising model. Figure 8 shows an example of how the performance of the D-Wave
system varies with α for one particular factoring problem.

Sweeping over the available offset magnitudes, we can choose the best α for each factoring
instance. Figure 9 compares the performance of the D-Wave system with the best anneal
offset magnitude to the performance with no anneal offset. Most problems at the largest
scale considered (10-bit semiprimes) were solved in 250,000 samples only when anneal
offsets were used. For instances that were solved both with and without anneal offsets,
using anneal offsets typically reduced the time required to find a solution by 2 to 3 orders
of magnitude.

Copyright © D-Wave Systems Inc.



Boosting integer factoring performance via quantum annealing o�sets 9

6 8 10
0

0.2

0.4

0.6

0.8

1

Problem size (bits in factored number)

Pr
op

or
ti

on
of

pr
ob

le
m

s
so

lv
ed

No offsets
Offset strategy

(a)

1e-4 1e-2 1e0 Unsolved
1e-4

1e-2

1e0

Unsolved

Solution time, no offset tuning

So
lu

ti
on

ti
m

e,
of

fs
et

st
ra

te
gy 6–bit

8–bit
10–bit

(b)
Figure 9: Performance of the 2000-qubit D-Wave system on factoring all 6-, 8-, and 10-bit semiprimes,
with and without anneal offsets. (a) Percentage of instances solved using 250,000 samples per in-
stance. (b) Time required to find a solution for each instance. Points below the diagonal show a
performance benefit from employing the anneal offset strategy.

In general, different problems will have different optimal offset magnitudes, even when
those instances use the same chains. However, the pattern in Figure 8 is fairly typical.
Choosing too large an offset magnitude can overcompensate for the effective tunneling
energies as well as increase the misspecification of the Ising model. Figure 10 shows the
median time to solution across all problem instances, using various anneal offset magni-
tudes.

4 Discussion
Anneal offsets are a newly available feature in D-Wave 2000-qubit quantum annealing sys-
tems. We have demonstrated a class of problems for which anneal offsets greatly improve
performance, both in the number of problems solved and the frequency with which opti-
mal solutions appear. Anneal offsets are not always necessary, and are likely not always
effective, but promise an avenue for mitigating computational bottlenecks in inputs with
certain structural characteristics.

Here we have determined good offset values by looking at chains as isolated systems,
whose dynamics can be synchronized effectively using a theoretical model. This strategy
may work particularly well for factoring because of the regular structure of the embeddings
used. These problems have a wide range of chain lengths (long chains for input variables
and single-qubit chains for ancillary variables), but a relatively small number of distinct
chain lengths (all input variables have the same chain length, as do all ancillary variables).
For problems with a wider variety of chain lengths, homogenization via anneal offsets may
be less effective.

The regular structure of the constraint satisfaction problem may also play a role in the

Copyright © D-Wave Systems Inc.
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Figure 10: Median time to solution across all problems, for various anneal offset magnitudes.

dramatic performance improvements that we have observed. Every input variable in an
n× n-bit multiplication circuit is contained in exactly n constraints, and those constraints
form a grid-like pattern. As a result, the optimal choice of tunneling energies might be
uniform across all input variables. In contrast, Farhi et al. [7] suggest that nonuniform
tunneling amplitudes may be preferable when variables are incident with disparate num-
bers of constraints. In general, determining an optimal set of anneal offsets for a given
optimization problem is difficult and will be the subject of continued research.
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A Derivation of the anneal delay function for chains
Using perturbation theory, we can write the expression for the tunneling energy of a chain
of length k as

A(k) = A ∑
p∈P+−

(
A
B

)|p|−1 1
∏xi 6=0∈p(HP(xi)− HP(x0))

,

where P+− is a set of paths in the state space connecting classical ground states of the chain
(all + and all − states), xi are states along the path, and x0 is one of the ground states.
When the transverse field A becomes small compared to the energy scale B, the leading
contribution has the form

A(k) = 2A
(

A
B

)k−1 1
∏i 6=0∈p+−(HP(xi)− HP(x0))

+ O

(
Ak+1

Bk+1

)
,

where p+− denotes the path connecting two ground states by consecutively flipping spins
from one end of the chain to the other. Because the energy penalty of states along this
path are all equal to 2 (we have chosen J = −1 as chain coupling), the above expression
simplifies to

A(k) = 2A
(

A
2B

)k−1
+ O

(
Ak+1

Bk+1

)
.

Tunneling energy varies during the anneal and we can heuristically determine the freeze-
out time s(k) by equating this energy to some small value:

s(k) : A(k)(s(k)) ≈ 2A(s(k))

(
A(s(k))
2B(s(k))

)k−1

= ε.

Using a particular annealing schedule of one of the D-Wave systems, we get offsets be-
tween chain freeze-out times s(k)ε − s(1)ε depicted on Figure 11(a). In all cases, the depen-
dency of anneal offset on chain length can be approximately parametrized as

∆s(k) = s(1) − s(k) = β
1−k

k − 1,

which is supported by the dependency of log
(

∆s(k) + 1
)

on 1
k shown in Figure 11(b). For

the given choices of ε, parameter β is in the range β ∼ 0.69− 0.76. We choose the value
β = log 2 in the main text.

Copyright © D-Wave Systems Inc.
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Figure 11: (a) Anneal offset delay ∆s(k) as a function of chain length k. (b) Nearly linear dependency

of log
(

∆s(k) + 1
)

on 1
k .

Copyright © D-Wave Systems Inc.
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