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Overview

We introduce a new input class called clause problems, that can be
used to study local constraint structures, which occur in inputs trans-
lated from general NP-hard problems to the D-Wave native topology.
We describe a small family of clause problems that are contrived to
create signi�cant challenges for two classical competition solvers, sim-
ulated annealing (SA) and the Hamze–de Frietas–Selby solver (HFS). We
identify key properties of these inputs that lead to poor performance
by the classical solvers, and consider whether these properties might
naturally arise in problems from real-world applications.
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Summary
• We describe a new input class called clause problems that capture local constraint struc-

tures. These structures are commonly found in native (Chimera-structured Ising
model) inputs that are mapped from general NP-hard optimization problems. While
clauses do not capture the full complexity of these logical problems, they can be used
to isolate certain component structures for in-depth study.

• We show how to construct simple clause problems that create significant performance
challenges for two well-studied classical competitors, simulated annealing (SA) and
the Hamze–de Frietas–Selby solver (HFS). SA is implemented on a 2048-core graphics
processing unit (GPU) platform, and runs about 500 times faster than a comparable
implementation running on a standard CPU.

• Experimental results show that a recent-model D-Wave quantum processing unit
(QPU) can solve these problems up to 16,000 times faster (total time) and 625,000
times faster (anneal time) than both SA and HFS. (Total time includes I/O time to
transfer information to and from the QPU chip; anneal time refers to pure computa-
tion time.)

• Multiplying SA GPU times by 500 gives an estimated anneal time speedup of 3 · 108

over a comparable CPU version, which is the same order of magnitude as that ob-
served by Denchev et al. in ‘’What is the computational value of finite range tunnel-
ing?”, Phys. Rev. X, 2015.

• These clause inputs are specially designed to have certain properties that expose poor
performance of SA and HFS. We describe these properties and argue that similar
outcomes might be observed when real-world problems (of sufficiently large size)
are transformed for solution on D-Wave QPUs.

Copyright © D-Wave Systems Inc.
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1 Introduction
A D-Wave computing system implements a family of quantum annealing algorithms in
hardware on a quantum processing unit (QPU) to heuristically solve instances of the NP-
hard Ising model (IM) optimization problem. The QPU exploits quantum properties such
as superposition, entanglement, and tunneling, to carry out its task (for details see [1–7]).

Qubit connectivity in the QPU is described by G, a subgraph of a Chimera graph, which is
a k× k grid of 8-qubit cells (see Section 3 for more). A Chimera graph of size k containing
8k2 qubits is denoted Ck. Several classical optimization heuristics have been implemented
that are specialized to the Chimera topology in the sense that they only read inputs defined
on G. These so-called native solvers exploit certain properties of the Chimera graph such as
bipartiteness and low degree, and are generally accepted as the fastest classical approaches
known for solving native inputs defined directly on G.

Our goals in this report are threefold: (1) to introduce a new family of inputs called clause
problems that can be used to study local constraint structures, which appear in general prob-
lems that are mapped to the Chimera topology; (2) to present a simple demonstration of
the No Free Lunch principle by showing that simple input structures can create significant
performance challenges for state-of-the-art native classical solvers; and (3) to identify the
key properties that make these inputs hard for these classical solvers to solve.

Clause problems, described in Section 3, are motivated by several recent papers describing
use of previous generation D-Wave systems to solve general NP-hard problems, including
circuit fault diagnosis [8], database query optimization [9], and job shop scheduling [10].
In this work a logical input formulated for the original problem is transformed to IM and
then mapped to G to create a native input for direct solution on the QPU, a process that
may expand input size.1

The logical problems described in these papers contain local constraints that define problem
restrictions involving small subsets of variables. A constraint is analogous to a clause in a
general Boolean formula, which describes a logical relationship among a small number of
variables, and which must be satisfied as part of the global solution. In these papers the
constraints are translated and mapped as distinct input components, creating a pattern of
small regular subgraphs in G; various strategies (such as chain embeddings or place-and-
route schemes [8]) may be used to connect the representations of single variables appearing
in multiple subgraphs.

Clause problems can be used to investigate properties of inputs built from small regular
structures representing such constraints. The problems studied here are built from grids of
C2 and C3 clauses, with limited interactions between grid neighbors: note that unlike native
inputs derived from logical problems, these problems do not contain any global structures
to tie one clause to another. Since they do not contain global interactions (as discussed in
King et al. [11]), no claim is made that these inputs have combinatorial complexity that
scales with problem size.

1To date, performance analyses on these problems have returned mixed results, sometimes showing quantum
runtime speedups by factors of 1000 [9] or 25 [8] against classical solvers working on the logical problem, and
sometimes showing little difference. In some cases the latter result may be due to limited problem sizes required
by early generation QPUs: significant performance differences cannot be observed when inputs are small and all
solution methods take time on the scale of a few milliseconds.

Copyright © D-Wave Systems Inc.
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Nevertheless, these seemingly trivial native problems can be extremely challenging for
some native solvers to solve. We consider two well-studied solvers—simulated annealing
(SA), and Selby’s implementation of the Hamze-de Freitas-Selby algorithm (HFS)—in com-
parison to a recent-model 2000-qubit QPU. The SA solver runs on an NVIDIA 980 platform
with 2048 GPU cores, and is roughly 500 times faster than a comparable CPU-based im-
plementation. HFS runs single-threaded on a standard Intel CPU core. Section 2 contains
details about these solvers and platforms.

We look at performance on two different clause types that are adaptations and general-
izations of the weak-strong cell clusters of Boixo et al. [12] and Denchev et al. [13]. Weak-
strong clusters were designed to demonstrate that D-Wave QPUs are capable of finite-range
multiqubit tunneling, a property of quantum computation that is not available to classical
algorithms. Denchev et al. observe that the “computational value” of quantum tunnel-
ing can be substantial, yielding runtime speedups by factors up to 108 against two native
solvers, SA and quantum Monte Carlo (QMC). However, as they point out and Mandrá et
al. [14] later verify, other classical approaches solve these inputs much more efficiently—in
particular the HFS solver studied here.

Our experimental results in Section 4 show that these clause problems are challenging for
both SA and HFS to solve. We do not have adequate computing resources to demonstrate
runtime speedups on the scale of 108 as in [13], which would require several CPU-months
of classical computation time.2 Instead we report results of smaller-scale tests with 200-
second timeout limits placed on the classical solvers. Our tests at largest problem sizes
revealed quantum runtime speedups by factors as high as 16,000 (total time) and 625,000
(anneal time) over HFS and SA. (Total time includes I/O overhead to move information
on and off the QPU; anneal time refers to pure computation time.) Multiplying SA GPU
times by 500, this translates to an anneal-time speedup of about 3× 108 over a CPU imple-
mentation of SA, within the same order of magnitude as the runtime speedup observed in
[13]. These speedups correspond to cases where the classical solvers ran to timeout without
finding solutions of comparable quality to those found by the D-Wave QPU within a few
milliseconds: larger experiments with longer timeouts would have revealed even greater
performance gaps.

The performance metric used here is similar to the TTT metric described by King et al.
[15], which measures time to find good-quality solutions in scenarios where optimality is
not guaranteed; see Section 4 for details. As in [15], we focus on runtime comparisons
and do not closely analyze scaling performance (as defined in Rønnow [16]), for several
reasons discussed in Section 2, including the fact that scaling of the classical solvers cannot
be observed at higher problem sizes due to timeouts.

This work provides a simple empirical demonstration of the No Free Lunch (NFL) prin-
ciple, based on a theorem by Wolpert and Macready ([17–19]). For technical reasons the
theorem does not apply to the three solvers studied here,3 but a consequence of the the-
orem is relevant: apart from its intrinsic complexity, the perceived hardness of any given
input instance depends on how well its structural properties “align with” [19] the partic-

2Overall our tests required a few weeks of computation time, including pilot tests to tune experimental pa-
rameters.

3The theorem applies to classical algorithms that are complete, and either deterministic or derandomized (it
would not be difficult to adjust these assumptions to cover SA and HFS). It also assumes that algorithms examine
solutions one-by-one in sequential order, whereas quantum annealing processors are capable of examining multi-
ple solutions simultaneously through the use of superposition states. It is not known whether an analogous NFL
theorem holds for quantum computing.

Copyright © D-Wave Systems Inc.
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ular classical algorithm(s) used to solve it. Section 4 describes how the structures of SA
and HFS are misaligned with certain key properties shared by weak-strong clusters and
the clause problems studied here.

A primary mission of empirical research in heuristics is to understand those relationships
between input properties and algorithm structures, both in order to build better algorithms
and to make recommendations to the practitioner as to which solution method is best for
which types of input. We do not expect that generated inputs such as the clause problems
studied here (or generated native inputs studied elsewhere) are likely to appear in practical
scenarios. However it is useful to consider whether the underlying properties that make
these problems hard to solve might arise naturally in application inputs. Properties that
are easy to identify provide a basis for making recommendations about solution methods;
properties that are hard to identify motivate interest in robust solvers that perform well
(best worst-case rather than best best-case) over broad classes of inputs. Section 5 briefly
considers whether the results described here might extend to other native solvers and more
general input classes.

2 Solvers and platforms
This section presents an overview of the solvers tested here and discusses tuning and tim-
ing considerations.

The D-Wave system. A D-Wave QPU heuristically solves instances of the Ising model
(IM) problem: Given input weights (h, J) on the nodes and edges of a working graph
G = (V, E), assign spins si = ±1 (sometimes denoted si ∈ {↑, ↓} for convenience) to
nodes so as to minimize the energy function

E(s) = ∑
i∈V

hisi + ∑
(i,j)∈E

Jijsisj. (1)

The J values are called couplings, which may be ferromagnetic (negative) or antiferromagnetic
(positive). The h values are called fields. A spin assignment that minimizes E(s) is a ground
state, and non-optimal assignments are excited states. If an individual term hisi or Jijsisj has
positive sign (i.e., is not minimized) in a ground state solution, we say that the correspond-
ing field or coupling is frustrated. The problem is NP-hard, and trivial transformations
exist for quadratic unconstrained binary optimization (QUBO), and weighted maximum
2-satisfiability.

The QPU contains a physical representation of the nodes and edges of G using qubits and
couplers. Solutions are obtained by the following process: (1) Program the QPU by assign-
ing weights to qubits and couplers according to input (h, J); (2) Repeat an anneal-readout
process R times to return R solutions, also called samples. Specifications for the particular
QPU studied here appear in the table below. See Bunyk et al. [3] and Johnson et al. [5] for
more about the quantum annealing process.

Size Qubits in G tprogram tanneal tread
C16 2033 9.4 ms ≥ 5 µs 123 µs

Copyright © D-Wave Systems Inc.



Optimization with Clause Problems 4

Tuning for better QA performance. Time performance on a D-Wave QPU, as well as on
classical comparators, is typically evaluated in terms of the expected number of samples
needed to observe a solution of some given target quality; better quality samples yield
runtime speedups by reducing R. Several techniques are known for improving raw sample
quality; some have been implemented as utilities in recent D-Wave systems, to allow the
system to be tuned for better performance on some types of inputs. These include:

• Preprocessing techniques modify the inputs presented to the QPU. Our tests incor-
porate a preprocessing utility called spin-reversal transforms, which applies single-spin
reversals (flipping the signs of associated fields and couplings) to a random subset of
qubits in G. The resulting perturbed problem may avoid small systematic biases in
the physical qubits and couplings, in effect averaging-out certain types of errors.

• Anneal time ta can be specified by the user (see below). In principle, longer anneal
times return better solutions, but in practice the correlation between ta and solution
quality can be quite small. Furthermore, the D-Wave systems available in 2017 pro-
vide a utility that allows users to modify the QPU annealing path by specifying per-
turbations of the quantum annealing algorithm used to solve the problem. We did
not explore this interesting new capability.

• Two postprocessing utilities, for optimization (reducing individual solution costs) and
for sampling (increasing variety in the solution set) are available. Pilot tests revealed
that postprocessing was not needed to improve raw QPU performance, so these op-
tions were not included in our main set of experiments.

Based on a pilot study evaluating parameter combinations with tanneal ∈ {5, 10, 20, 50, 100}
and g ∈ {1, 2, 5, 10} spin-reversal transforms per 1000 samples, the pair (tanneal = 20, g =
1) showed best performance and was used in the main experiments. Overall, QPU perfor-
mance on these inputs appears to be fairly robust to such parameter changes.

A computation taking R samples with g = dR/1000e spin-reversal transforms has total
running time

T = g · tprogram + R · (tanneal + tread).

We define sampling time as tsampling = tanneal + tread.

Simulated annealing (SA). Our GPU implementation of simulated annealing follows the
well-tuned native (CPU) solver of Isakov et al. [20], which is structured as follows.

1. An outer sampling loop returns R independent solutions.

2. A middle anneal loop carries out the simulated annealing process.

3. An inner loop performs a sweep of the n nodes of G. (This loop is not standard to
simulated annealing, but is common in native solvers.)

4. A code block in the inner loop probabilistically modifies the state of each node.

Our GPU implementation parallelizes the first and third loops of this algorithm: note that
the second anneal loop is inherently sequential (not parallelizable) because solution states
are modified incrementally according to the loop parameters.

Copyright © D-Wave Systems Inc.
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The outer sampling loop is easy to parallelize because it has low communication overhead,
requiring negligible time to ship the problem to the other cores and receive results.4 Paral-
lelization yields M-fold relative speedup,5 where M is the minimum of R and the number
of available cores.

Successful parallelization of the inner sweep loop requires careful assignment of sections of
G to individual cores, to balance local work against the relatively high cost of global mem-
ory access. Our SA code runs on an NVIDIA GeForce GTX 980 GPU platform with 2048
cores; our implementation finds good balance by assigning each core to a single Chimera
cell (eight nodes of G), giving a relative speedup of 256 = 2048/8 on C16 problems. The
code achieves up to 60 code block executions per nanosecond, compared to about 0.15
per nanosecond with single-threaded code running on an Intel CPU (described below).
This yields an absolute parallel speedup of approximately 500 on C16 problems, assuming
R ≥ 8 = 2048/256.

This approach spreads a problem of size Ck across k2 cores, and uses the remaining core
capacity to parallelize the outer-loop collection of samples. Note that on a fixed-size GPU,
parallel speedup from sweeping increases and parallel speedup from sampling decreases
with increasing problem size k. For example, a C8 problem uses just 64 = 8× 8 cores per
anneal, so that samples are collected at a rate of 32 = 2048/64 anneals per fixed time unit.
But a C16 problem uses 265 cores per anneal, so that the sampling rate is just 8 = 2048/256
anneals per time unit. As a result, depending on how R grows with k, GPU times scale
differently (typically worse) than single-core CPU times.6 CPU time is a more faithful repre-
sentation of total work performed by the algorithm and would be the preferred measure-
ment in a study of how algorithm performance scales with problem size; however, that
option is unavailable to us due to prohibitively high computation times (on the scale of
months) for the CPU implementation.

This solver has four parameters, betaStart, betaEnd, annealPath, and numSweeps. Pilot tests
were run on CR2,12 problems (see Section 3 for description) using a full factorial design on
betaStart ∈ {1, .01, .001}, betaEnd ∈ {1, 3, 5, 10, 15, 20}, annealPath ∈ {linear, geometric}
and numSweeps ∈ {104, 5 × 105, 105, 5 × 105, 106}, and the six best combinations were
tested again on CR2,16. The best combination (betaStart = .001, betaEnd = 1, annealPath =
linear) was used in the main tests, which took numSweeps ∈ {104, 106}.

Hamze-de Freitas-Selby (HFS). We use Selby’s implementation of the Hamze-de Freitas-
Selby algorithm (HFS) ([21], [22], [23]), modified to report each stopping state that it finds,
to simplify comparison to other sampling-based approaches.

Given an input defined on G and an initial random solution s, this algorithm iterates to
improve s by optimizing low-treewidth spanning subgraphs of G. At each iteration a new

4We note that, compared to anneal times in fractions of seconds, communication overhead moves from neg-
ligible to dominant if this code is deployed in massively parallel cluster machines or large networks. We also
note that, in principle, speedups from parallel sampling are available to D-Wave platforms as well, by mapping
multiple small problems onto G and/or using networked QPUs. Of course, D-Wave QPUs are currently less
ubiquitous than Intel cores.

5Relative parallel speedup compares time on P parallel cores to time on a single core of the same type. Absolute
parallel speedup compares time on P parallel (e.g., GPU) cores to the fastest known CPU implementation, which
may solve the problem an entirely different way.

6GPU times also scale differently from those of the hypothetical classical annealer defined by Rønnow et al.
[16], which (assuming one qubit equates to one core) corresponds to perfect absolute parallel speedup of the inner
loop but no parallel speedup of the outer loop.

Copyright © D-Wave Systems Inc.
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subgraph is selected at random from a fixed pool, an optimal solution is found for the
subgraph, and if the new solution improves s it is adopted. The process stops when an
internal stopping criteria is met. A strategy parameter p determines the size and complexity
of subgraphs in the pool. Higher p corresponds to bigger and more complex subgraphs,
which take more time per iteration to optimize, but may require fewer iterations or fewer
random samples overall. The two strategies considered here—denoted HFS3 and HFS4 for
p ∈ [3, 4]—are described further in the next section.

HFS cannot be implemented efficiently on a GPU, due to prohibitively high memory ac-
cess costs in the subgraph optimization step. Our tests run this solver on an Intel Xeon
E5-2643v3 CPU with 3.4 GHz clock, measuring wall clock time for a single computation
thread running on a single unloaded core. As with the other solvers, parallelization of the
outer sampling loop is straightforward, but limited by R and the number of parallel cores
available.

A note about runtimes and scaling analysis. The computation time for each solver de-
pends on the combination of R—the number of solutions in a given sample—with mea-
sured times of algorithm components, calculated as follows for QPU total time (TDWT),
QPU anneal time (TDWA), and the computation time for the two classical solvers S ∈
{SA, HFS}:

TDWT = tprogram + R · tsample,

TDWA = R · tanneal ,

TS = tinitialize + R · tsample. (2)

For TDWT , we have tsample = tanneal + treadout. For SA, tsample is proportional to (numSweeps ·
n) for a problem on n variables. For HFS, tsample can vary depending on problem size and
problem type, because the number of subgraph-optimization iterations for each output
depends on an internal stopping criteria that is not controlled by the user; the time per
optimization step also depends on the strategy parameter p and problem size n.

Figure 1 shows computation times for these solvers, as a function of R, measured on a
typical CR2,16 clause problem (described in Section 4) containing 2033 variables. The inset
shows a close-up of the lower left corner of the chart, corresponding to R ≤ 4 and runtimes
below 12,000 µs.

The solid and dotted blue lines (inset) labelled DW show QPU total times and anneal times,
respectively; total time is dominated by programming time, equal to 9ms on the QPU tested
here; the two lines have slightly different slopes corresponding to sampling time of 143 µs
and anneal time of 20 µs, respectively. The red and green lines show that HFS3 and HFS4
times are dominated by initialization costs, in this case near 210 ms. The two strategies
scale differently due to different costs of subgraph optimization. Finally, the yellow and
purple lines show that SA has negligible initialization overhead, but significantly different
scaling under the two parameterizations numSweeps = 104 (purple) and numSweeps = 106

(yellow).

The striking differences in magnitudes and slopes in these cost profiles create some sub-
tleties when reasoning about runtimes and problem complexity. As a general rule, run-
times grow with R, so increasing runtimes represent increasing levels of algorithm “work”
in response to increasing problem difficulty. However, the figure shows that individual
solver runtimes track R in very different ways; this is especially true for HFS times and

Copyright © D-Wave Systems Inc.



Optimization with Clause Problems 7

Figure 1: Typical computation times (microseconds) per number of solutions R returned, on a C2,16
problem with 2033 variables. The inset shows a closeup of the lower left corner of the chart, with
R ≤ 4 and Time ≤ 12,000 µs. DW denotes the D-Wave QPU.

DW total times, which are dominated by relatively high initialization and programming
costs, respectively. As well, differences in time-per-sample create different perceptions of
scaling in R. For example, doubling the number of samples from R = 2 to R = 4 ap-
proximately doubles the runtime of SA, but changes HFS4 runtime by only 20 percent.
For another example, increasing R by two orders of magnitude, from R = 1 to R = 100,
increases QPU total times by less than 25 percent. Solver-to-solver differences in runtime
scaling with R do not necessarily represent corresponding differences in algorithm effort.

These subtleties are compounded when evaluating how algorithm performance scales with
problem size, since software component times increase, while QPU component times (ta
and tr) are constant in problem size. Also, as discussed previously, SA runtimes scale dif-
ferently on CPU and GPU platforms, giving different performance profiles for the same
amount of total work. Furthermore, the observed performance of any given D-Wave plat-
form can be dominated by properties of its classical control system, which are in a state
of rapid development, so that scaling curves cannot be reliably extrapolated to larger sys-
tems. We also note that the lack of global structure in clause problems means that we
cannot claim that problem complexity scales exponentially with problem size.

For these reasons, in what follows we do not attempt to draw strong conclusions about
problem complexity based on how runtimes scale, except to note that performance gaps
between the quantum and classical solvers tend to grow with problem size.

3 Clause problems
Referring to input weights (h, J) used in the IM energy function (1), Figure 2 shows a CR2
ring clause built on a 2× 2 grid of four Chimera cells. All edges are ferromagnetic with
J = −1, forming a 4-ply ring around the cells. Two nodes in the northwest corner have
hstrong = −0.9 and two nodes in the southeast corner have hweak = +0.4; all other nodes

Copyright © D-Wave Systems Inc.
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have h0 = 0.

In terms of logical problem constraints, this ferromagnetic loop structure expresses an
equality constraint on some number v = 1 . . . 32 of variables (represented by the nodes), by
requiring that they all have equivalent values, either s =↑ or s =↓, in the optimal (clause)
solution. More complex relationships among the variables can be expressed, for example,
by flipping the signs of all Js associated with some variables. Clause size may grow or
shrink, according to how many variables are involved and how much “surface area” is
needed to connect variables among different clauses and structures.

The addition of nonzero fields hstrong and hweak turns this into a majority constraint (some-
times called a voting circuit) so that in the ground state, all variables have the spin as-
signment preferred by the majority. In constraints deriving from application problems the
fields would likely be replaced by connections to variables or structures that are external
to the clause, but here for convenience we use local fields to create votes.

Generalizing this basic idea, the next section (Figure 7) describes a (K8,8) bipartite clause that
divides nodes into two groups A and B, with the constraint that all nodes a ∈ A must have
different values from all nodes b ∈ B. Other types of local constraints can be expressed in
this way; for example a C2 can represent a complete (K4) graph. Bian et al. [8] give several
examples mapping boolean expressions (i.e., clauses) defined on two and three variables
to small groups of Chimera cells; Trummer and Koch [9] describe L-shaped TRIAD clauses
of varying sizes; and Venturelli et al. [10] describe mappings of constraints in a job-shop
scheduling problem. Full exploration of the myriad possibilities for representing local con-
straints by clauses, and evaluating the efficacy of various representations, is an interesting
problem for future research.

Describing Figure 2 in IM terms, by the energy function (1), the ground state S0 =↑↑ . . . ↑↑
has all 32 spins aligned; all couplings are unfrustrated, and weak fields are frustrated. The
first excited state S1 =↓↓ . . . ↓↓ also has all spins aligned, and all couplings unfrustrated,
but strong fields are frustrated. Other excited states have frustrated couplings, but local
minima may be found whenever all the spins in individual cells are aligned.

Note that a weak-strong cluster as in [13] comprises a pair of cells (e.g., the top half of a
CR2), with weak and strong fields on each. The cells in that paper have hstrong = −1 and
0 ≤ hweak ≤ 0.44, assigned to all eight nodes per cell. Couplings are J = −1 throughout.

The right side of Figure 2 shows one possible path in the energy landscape of the CR2,
walking from S0 on the left to S1 on the right, moving clockwise from the northwest corner
of the clause and flipping one spin per step; this landscape is discussed in the next section.

To form a full sized CR2,c problem, CR2 clauses are placed in a grid on a larger c × c
graph, with the positions (opposite diagonals) and signs of the strong and weak fields
chosen at random in each clause. Neighboring clauses are connected with weak couplings
(Jconnect = ±.2), with alternating signs across and down. This connection strategy, chosen
for simplicity, has a minimal effect on the energy landscapes of individual clauses, since ad-
jacent pairs of connectors cancel each other out when spins are aligned within cells (some
alternative connection strategies are discussed in Section 5). Note that the working graph
G has a small number of nonworking qubits (15 of 2048); missing qubits and couplings
alter the energy spectrum and possibly the ground states in some clauses.

Copyright © D-Wave Systems Inc.



Optimization with Clause Problems 9

�
�
�

@
@
@

�
�
��

B
B
BB �@��

�
PP

P

@
@
@

�
�
�

B
B
BB

�
�
�� @�
PPP

���

�
�
�

@
@
@

�
�
��

B
B
BB �@��

�
PP

P

@
@
@

�
�
�

B
B
BB

�
�
�� @�
PPP

���

�
�
�

@
@
@

�
�
��

B
B
BB �@��

�
PP

P

@
@
@

�
�
�

B
B
BB

�
�
�� @�
PPP

���

�
�
�

@
@
@

�
�
��

B
B
BB �@��

�
PP

P

@
@
@

�
�
�

B
B
BB

�
�
�� @�
PPP

���

ss
sss s s s
ss
sss s s s

s s s s

u u

ss
ssu u
ss
sss s s s

J = −1 (FM) hstrong = −.9

hweak = +.4

h0 = 0

Figure 2: (left) A CR2 ring clause. All couplings are ferromagnetic; there are two strong fields in the
northwest corner and two weak fields in the southeast corner. (right) A path in the energy landscape,
walking from the first excited state S1 =↓↓ · · · ↓↓, to ground state S0 =↑↑ · · · ↑↑, flipping one spin
per step. The red dot is in a local minima where each cell has all eight spins aligned and some
couplings between cells are frustrated.

4 Experimental results
This section describes performance comparisons of SA, HFS, and the QPU on different
clause problems, starting with the CR2,c problems described in the previous section.

The performance metric used here is time-to-best (TTB), calculated as follows. Let B denote
the target energy—the minimum energy found among pooled solution samples from all
solvers, running within a fixed time limit T∗. For solver S with sample S∗, let πS denote
the proportion of solutions in S∗ that have target energy B. Then R∗S = 1/π is the expected
number of samples needed for S to return a solution with energy B. TTB is calculated by
inserting R∗S into the time formula (2) for each solver. In these tests the software solvers
ran to timeout limits of 200 seconds. The QPU was given a 20-second (total time) limit but
typically needed less than 100 milliseconds to find target solutions. (Although we did not
systematically check that the QPU reached ground state in every case, comparison to HFS4
results in the first experiment, and spot-checks on intact clauses, suggest that ground states
were typically found.)

4.1 CR2,c ring problems

The first experiment considers performance on random CR2,c problems for c ∈ {8, 12, 16},
corresponding to n = 507, 1144, 2033 variables, approximately doubling at each increment.
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Figure 3: Median TTB in microseconds, on CR2,c problems for c ∈ {8, 12, 16}. Solid and dashed
lines denote median times, dotted lines denote minimum and maximum observed times. The dotted
line at top shows 200-second timeout limits for software solvers: missing data points correspond to
solvers that reached timeout (on all inputs) without finding solutions of target quality B. DW denotes
the D-Wave QPU.

This test includes the D-Wave QPU, the two parameterizations HFS3 and HFS4, and two
versions of SA with numSweeps ∈ {104, 106}.
Figure 3 shows TTB for each solver at each problem size, measured over 15 random prob-
lems at each size. Solid and dashed lines show median TTB, and dotted lines show the
minimum and maximum TTB values recorded at each point. Missing data points and lines
(HFS3 and SA at n ≥ 1144) correspond to cases where the solver timed out after 200 sec-
onds without finding solutions of target quality B that were found by the other solvers.
The 200-second timeout limit is indicated by the horizontal dotted line at the top.

The blue solid and dashed lines show median QPU total and anneal times, respectively;
blue dotted lines around median total times show that the range of observed data was
extremely small. Yellow and purple markers show results for SA with numSweeps = 104

and numSweeps = 106 respectively, at n = 507. On larger inputs these solvers timed-
out in the median case, although some problems of size n = 1144 were solved within the
200-second limit, as indicated by the dotted minimum curves; the solvers timed out on all
inputs at n = 2033.

The green and red markers show that the two parameterizations of HFS display qualita-
tively different performance on these problems. HFS3 fails on all C2,c problems for c ≥ 12,
but HFS4 does very well, with runtimes corresponding to R∗HFS4 ≤ 2 throughout the range
of problem sizes. This is very close to the lower bound on HFS4 runtime imposed by the
initialization step, as shown in Figure 1.

Performance of SA and the QPU. The relative performance of SA and the QPU on these
problems roughly corresponds to those observed on the weak-strong cluster problems of
Denchev et al. [13], even though the tests involve different metrics and different platforms
(GPU versus CPU) for SA.

Copyright © D-Wave Systems Inc.
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s s
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s s
s

Figure 4: The boxes represent Chimera cells in a C8 graph. The thick black lines show connectivity of
spanning subtrees used by HFS. The left is an HFS3 subgraph with eight vertical branches and one
horizontal crossbar, each one cell wide. The HFS4 subgraph on the right has branches and a crossbar
that are one and two cells wide. The purple boxes show how these subgraphs intersect with C2 (left)
and C3 clauses (right).

This correspondence is explained by the fact that the ring clause and the weak-strong clus-
ter share two key properties that drive performance of these solvers. The first property
is the presence of weak and strong fields of opposite signs in different cells; the second
is the use of blocks of ferromagnetic couplings within and between cells. Consider again
the example landscape on the right of Figure 2. The weak fields (probabilistically) lure SA
into some local minimum early in the anneal process, in which both the weak cell and the
strong cell have internally-aligned spins but some couplings are frustrated, as indicated
by the red dot. The couplings create a rugged landscape with high hills (in terms of the
energy function) that are difficult for SA to traverse as it performs a probabilistically biased
random walk to search for the ground state.

The QPU, when solving these problems, starts with a flat landscape and a quantum super-
position of states. As the anneal progresses and hills grow, the QPU must use a combina-
tion of quantum tunneling and thermal excitations to move towards the evolving ground
state. Compared to weak-strong clusters, a C2 clause has greater Hamming distance be-
tween the first excited state and ground state (32 versus 8 bits), and more hills and valleys
between the two (four hills versus one). Nevertheless the QPU is successful at negotiating
this more complex landscape. See [13] for more about the mechanism of tunneling.

Additional tests not shown here indicate that this performance difference is fairly robust
with respect to changes in number and magnitudes of (h, J) as long as basic inequalities
(such as |∑ hstrong| > |∑ hweak| and |∑ hstrong| < |8J|) preserve the energy spectrum. SA
finds these problems easier to solve if the magnitude of J is reduced, which lowers the
height of hills in the landscape, making them easier to traverse. The QPU shows better
performance if key inequalities are well-separated, so that (classical) analog control errors
in the processor do not introduce spurious ground states.

Copyright © D-Wave Systems Inc.
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Figure 5: (left) A ring clause built on a C3. (right) A bipartite clause built on a C3.

Performance of HFS. The metaphor of solution landscapes and hills used for annealing-
type heuristics does not apply to HFS, which belongs to a different heuristic paradigm
based on subproblem optimization. Instead we may consider performance in light of the
optimal substructure property, which holds when an optimal solution to a global problem
contains optimal solutions to subproblems. This property is often invoked in proofs of
correctness of polynomial-time algorithms, as well as in proofs of inapproximability and
lower bounds for NP-hard problems (for examples see [24], [25] [26], [27]). While heuris-
tics from this paradigm can give excellent performance on some types of inputs, they are
vulnerable to scenarios where the optimal substructure property does not hold.

Recall that HFS works by iteratively selecting random spanning subgraphs of G and cal-
culating the optimal solution for each selection. Two examples of spanning subgraphs on
a C8 graph are shown in Figure 4; the small boxes represent Chimera cells. The left side
shows a spanning subgraph with dark lines connecting cells via eight vertical branches and
one horizontal crossbar; the HFS3 strategy constructs subgraphs like this, with branches
and crossbars that are one cell wide. The right side shows a spanning subgraph with five
branches and a crossbar that are one and two cells wide, as constructed by HFS4. The
purple boxes show how these subgraphs intersect with individual C2 (left) and C3 (right)
clauses; the red and blue dots indicate locations of weak and strong fields of opposite signs.

On the left, the higher purple box shows a clause intersection with two branches: this splits
the clause in two, so that the subgraph-optimal solution computed by HFS (nonzero fields are
unfrustrated) is incompatible with the clause-optimal solution (weak fields are frustrated), a
violation of the optimal substructure property. The lower purple box shows a clause inter-
section with the crossbar: this intersection contains three-fourths of the couplings, enough
to ensure that the subgraph-optimal solution aligns with the clause-optimal solution so
that the optimal substructure property is not violated. But note that the optimal spin as-
signment calculated on this clause could be undone if the cause intersects two branches in
a later iteration of the algorithm and the later subgraph is accepted as an overall improve-
ment.

As HFS3 iterates, randomly selecting and optimizing subgraphs, spin configurations for
individual clauses may be optimized, and possibly later assigned non-optimal values, ac-
cording to a (random) sequence of crossbar locations in the full graph. The TTB results for
HFS3 in Figure 3 show that at C2,8 (507 variables), HFS3 succeeds: this is because the cross-
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bar intersects a high proportion (one-fourth) of all clauses at each iteration. The probability
of a successful outcome decreases as the ratio of branch area to crossbar area grows with
problem size, causing R∗HF3 to grow beyond the timeout limit.

One way to prevent this scenario is to optimize over larger subgraphs, as does HFS4. A
double-wide branch is big enough to find clause-optimal solutions for every CR2, and just
a few iterations are needed to align each clause with a double branch or a double crossbar.
In this case, the probability of finding a violation of the optimal substructure property does
not grow with problem size. As a result, as shown in Figure 3, HFS4 median TTB to solve
CR2,c problems is near its minimum throughout.

On the other hand, as suggested by the right side of Figure 4, HFS4 can be similarly
thwarted using C3 clauses. The next experiment explores this scenario.

4.2 CR3,c problems

This experiment compares performance on CR3 ring clauses shown on the left side of Fig-
ure 5. As before, FM couplings create a 4-ply ring around the exterior perimeter, and weak
and strong fields are placed on opposite diagonals to create a majority circuit; note the
center cell is isolated.

Figure 6 shows median TTB times on random CR3,c problems of size c = 9, 12, 15, corre-
sponding to n = 642, 1144, 1789 variables. As predicted by the discussion in the previous
section, HFS4 (as well as HFS3) fails to find target solutions B within timeout limits at
c = 15, as the ratio of branch area to crossbar area increases with problem size.

Comparison to Figure 3 shows that, in contrast to HFS4, the other solvers have generally
lower TTB on CR3,12 problems than on CR2,12 problems (of size common to both graphs).
Although both parameterizations of SA reached time-out in the median case at c = 15, the
dotted min-curves show that in some cases the solver found target solutions in just under
the 200-second limit. Both versions of SA were able to solve all CR3,12 problems within the
time limit. Similarly, comparison of anneal times in Figures 3 and 6 shows that the QPU
finds CR3,c problems somewhat easier to solve.

This somewhat nonintuitive result can be attributed to the introduction of isolated (easy-to-
solve) cells in clause centers, and the relative sparsity of weak fields in the global problem (a
CR2,12 has 36 weak cells and a CR3,12 has 16 weak cells). This creates less overall frustration
for the QPU and SA solvers, and fewer violations of the optimal substructure property for
HFS3.

The next experiment explores another variation on clause structures.

4.3 Bipartite clause problems

The right side of Figure 5 shows a CB3 bipartite clause. The blue couplings between cells are
ferromagnetic chains with Jchain = −1.5, connecting pairs of qubits vertically and horizon-
tally. The vertical chains create a set A of 12 logical nodes, and the horizontal chains create
a set B of 12 logical nodes. This gives a logical biparite graph K12,12. The bipartition edges
(a, b) are connected with ferromagnetic Jcell = +.5 couplings inside the cells. This logi-
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Figure 6: TTB on CR3,c problems for c = 9, 12, 15. Missing data points correspond to software time-
outs. Solid and dashed lines denote median times, dotted lines denote minimum and maximum
observed times. The 200-second timeout limit is shown by the horizontal dotted line at top DW
denotes the D-Wave QPU.

Figure 7: TTB on CB3,c bipartite problems. Missing data points correspond to software timeouts.
Solid and dashed lines denote median times, dotted lines denote minimum and maximum observed
times. The 200-second timeout limit is shown by the horizontal dotted line at top. DW denotes the
D-Wave QPU.

Copyright © D-Wave Systems Inc.
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First Experiment
Input DW anneal DW total SA HFS3 HFS4
CR2,16 4.3e3 4.1e4 (2e8) (2e8) 2.3e5
CR3,15 3.2e2 1.2e4 (2e8) (2e8) (2e8)
CB3,15 1.7e4 1.5e5 (2e8) (2e8) (2e8)
max TDWA/3.2e2 625,000 625,000 625,000
max TDWT/1.2e4 16,667 16,667 16,667

Table 1: Summaries of median time-to-best (TTB) in microseconds from each experiment, at the
largest problem size. The notation 9.8e7 is shorthand for 9.8× 107. The notation (2e8) indicates the
solver timed out at 200 seconds (2e8 microseconds) without finding target solutions matching those
found by the D-Wave QPU. The bottom rows show the largest speedups seen for each solver (using
the 200-second time limit compared to D-Wave total and anneal times.

cal graph has two ground states, in which the logical sets have different spin orientations,
either (a =↑, b =↓) or (a =↓, b =↑).
Weak and strong fields of opposite sign are placed on nodes from A only, in opposite cor-
ners of the clause. Now, as with CR3 ring clauses, there is one ground state with weak fields
frustrated, and a first exited state with strong fields frustrated; in higher energy states, one
or more couplings are frustrated. Figure 7 shows TTB for these solvers on CB3,c bipartite
problems with c ∈ {9, 12, 15}.
Comparison to Figure 6 reveals somewhat mixed results. Most noticeably, the blue dashed
curve shows that the QPU finds bipartite problems somewhat more challenging to solve,
yielding a 50-fold increase in anneal times compared to ring problems at C15. The compar-
ative unevenness of the solution landscape (a combination of high and low hills) may be a
factor here.

The purple curve shows that SA has nearly identical performance on ring and bipartite
problems. The red and green curves show that bipartite problems are somewhat harder
than ring problems for both HFS3 and HFS4 at C12 sizes. Investigation of time components
suggests that much of this time difference is due to higher initialization costs and higher
costs per optimization, which may be partially attributed to the fact that CB3 is a denser
problem with no isolated center cell.

Table 1 summarizes median TTB observed for each solver on each problem, at the largest
problem sizes tested. The top section shows results for the first experiment on CR2,16 prob-
lems, and the bottom section shows results for the second and third experiments, on CR3,15
and CB3,15 problems. In this table, the notation 9.8e7 is shorthand for 9.8× 107; the notation
(2e8) marks a case where a software solver reached the 200 second timeout limit on with-
out finding solutions matching the best-in-pool solution B. The two bottom rows show the
maximum runtime speedups observed for QPU anneal and total times, compared to classi-
cal solver times, substituting the timeout limit as a lower bound on true computation time.
Because of the 9.4 ms lower bound on DW total time and the 2× 108 µs limit on software
times, the maximum observable speedup in total time in these experiments is 21,276.
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5 Discussion
This report describes a new family of native inputs for D-Wave QPU topologies, called
clause problems that can be used to study local constraint structures, which appear to be
common in inputs translated from general NP-hard problems to the D-Wave native topol-
ogy. Although these inputs have minimal global structure, they can be designed to create
significant performance challenges for two native classical solvers, simulated annealing
(SA) and Hamze-de Frietas-Selby (HFS). A series of experiments is used to expose the key
properties that make these inputs hard.

The first experiment shows that relative performance of SA and the QPU on both weak-
strong clusters and CR2 rings can be explained by the presence of weak and strong fields of
opposite sign, and blocks of ferromagnetic couplings between and within cells. The fields
lure SA into a local minimum early in the anneal: that is, starting from a random initial
state, it is probabilistically drawn to a local minimum where both weak and strong fields
are unfrustrated but couplings are frustrated; from there it must make its way across high
hills created by the couplings, to discover the ground state. We tried many parameteri-
zations of the code we have implemented, and all combinations failed to negotiate these
landscapes within the time limits. It is possible that more success would be found with a
different anneal schedule, perhaps that converges relatively slowly in early stages of the
anneal.

The first experiment also exposes a fundamental vulnerability of HFS to inputs that create
violations of the optimal substructure property. In the case of HFS3 such violations are fre-
quent (whenever clauses intersect branches); for HFS4 the violations are rare. This creates
a qualitative difference in performance of these two parameterizations on these inputs.

The second experiment extends this argument to show that HFS4 similarly fails on CR3,c
clauses. An obvious strategy for coping with failure on CR3,c clauses is to implement HFS5,
with subgraphs having triple-wide branches. However, further extension of this algorithm
strategy is not likely to yield a fast heuristic: the cost of optimizing a subgraph with k-wide
branches grows as Θ(nk), suggesting that the optimization step of HFS5 would be about
2000 times slower than HFS4 on a C16-sized problem.

Another possibility is to develop a version of HFS that randomly optimizes “clause-shaped”
subgraphs rather than “tree-shaped” subgraphs of the Chimera graph. However, it would
not be difficult to develop inputs that create violations of the optimal substructure prop-
erty for that version as well. Extending this algorithmic strategy to its logical end to cover
multiple contingencies yields a brute force algorithm with Θ(nn) computation time. The
larger point is that all heuristics within the substructure-optimization paradigm, including
HFS, perform poorly on inputs for which substructure-optimal solutions do not align (or
rarely align) with globally-optimal solutions.

The third experiment reinforces our intuition that performance of all of these heuristic
solvers is tied less to the specific inputs used, but rather to whether the underlying prop-
erties that drive performance are present. Additional tests not shown here suggest that
performance profiles are robust to other changes in, e.g., the number and magnitude of
fields, placement of fields on the four cells, and to a lesser extend, magnitude and num-
ber of coupling weights. Some very preliminary tests on other native solvers, including
GPU implementations of quantum Monte Carlo and Parallel Tempering, suggest that those
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annealing-based solvers experience difficulties similar to those of SA on these types of in-
puts; however further exploration of the large parameter space offered by those solvers is
needed before firm conclusions can be drawn.

These results suggest that SA and HFS, which generally show good performance on native
inputs having random weights (such as random Chimera-structured problems), might ex-
perience difficulties on inputs that are translated from general NP-hard problems, if these
properties are present. For example, problems that are transformed and embedded tend to
contain ferromagnetic chains of large weight, which would create the rugged landscapes
that SA finds difficult to traverse. In the case of HFS, chains that cross multiple branches
of the optimized subtrees (perhaps on a diagonal or stairstep fashion) would represent vi-
olations of the optimal substructure property. Our understanding of the underlying mech-
anisms that drive performance of quantum annealing processors is quite primitive, and it
is extremely difficult to predict how well D-Wave QPUs will perform by comparison. This
is an interesting question for future experimental research.
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