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Motivation

Challenge:

D-Wave 2X

≈ 45x45 arbitrary QUBO

D-Wave 2000Q

≈ 65x65 arbitrary QUBO

Question:
How can we efficiently use near-term D-Wave computers for solving
large-scale problems?
Approach:
Hybrid classical-quantum algorithms within the multilevel framework
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Multilevel Methods For Combinatorial Optimization

Multilevel Methods:

Technique useful for problems with multiple scales of behavior

Major phases:

Coarsening Phase
Initial Solution
Uncoarsening Phase

Interpolation
Refinement
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Multilevel Methods For Combinatorial Optimization

  

Multiscale 
Methods for 

Discrete 
Optimization 

on Graphs

Computational 
Optimization 

Problems

Compression, Linear Arrangement, 
Bandwidth, 2-sum, Wavefront, Workbound

Partitioning, Clustering, Vertex Separator

Dimensionality Reduction

Response to Epidemics and Cyber Attacks

Visualization

Network
Modeling

Network Generation

Network Sparsification

Machine
Learning

Support Vector Machines

Text Analysis and Hypothesis Modeling

Applications of Multilevel Methods
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Multilevel Methods For Optimization

93

Examples of Multilevel Optimization

Multiscale Methods for 
Networks
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Multilevel Methods For Combinatorial Optimization

9

Cycles, Linear Complexity

Coarsening
Create a hierarchy of
restriction operators
and corresponding coarse 
problems P0 ,…,Pk

Uncoarsening
Gradually approximate

solutions Sk-1 ,…,S0 by
(1) interpolation from 

previous level, and
(2) further refinement

Level 0

Level 1

Level k-1 

Level k

Multiscale Methods for Discrete Optimization on Graphs
Ilya Safro, Clemson University

Exact solution
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Multilevel Methods For Combinatorial Optimization
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Multiscale Methods for Discrete Optimization on Graphs
Ilya Safro, Clemson University
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solution

coarsest 
graph

original graph

Interpolation
Relaxation
Refinement
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Multilevel Methods For Combinatorial Optimization

11

Multiscale Algorithms for Computational Problems on Graphs

Multiscale Methods for Discrete Optimization on Graphs
Ilya Safro, Clemson University

Why? Because it is easy to combine the multiscale frameworks with other methods.
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Multilevel Requirements

Question: Is the multilevel approach suitable for my problem, P?
Refinement Requirements:

Refinement algorithm - Does a refinement algorithm exist?

Can refinement algorithm handle additional restrictions caused by
coarsening phase?

e.g., coarser graphs are weighted in GP

For some problems, only known heuristics are based on construction
rather than refinement

Not clear if multilevel can be applied
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Multilevel Requirements

Coarsening Requirements:

Solution in any of the coarsened spaces should induce a solution on
the original space

current solution could be extended through all levels to a solution of
the original problem
coarse solution should have the same cost with respect to objective
function
goal is to find set of coarse variables that in future would interpolate
their solution to fine variables
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Graph Partitioning

Graph Partition Problem:

Given G = (V ,E )

V ∼ nodes, E ∼ edges

Goal: Partition V into k approximately equal parts minimizing the number
of cut edges between parts

Applications:

Graph-based QMD simulations

VLSI design

Load balancing - minimize communication

between processors

Sparse matrix-vector multiplication - Partition

rows to minimize communication

Social networks, cyber networks, ...
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Graph Partitioning

Partitioning large graphs is often an important subproblem for complexity
reduction/parallelization
Research in Graph partitioning

NP-hard: uses heuristics and approximation algorithms

Very active area of research spanning over 50 years

Most successful practical methods use multilevel paradigm

Popular mutlilevel tools:

CHACO by Hendrickson and Leland, since 1993
METIS by Karypis and Kumar, since 1995
SCOTCH by Pellegrini, since 1996
JOSTLE by Walshaw, since 1995
KAHIP by Schulz, since 2013
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Solving Optimization Problems on D-Wave 2X

Formulate as unconstrained quadratic integer problem

min
q1,...,qn

( n∑
i=1

aiqi +
∑

1≤i<j≤n
aijqiqj

)
Ising formulation if qi ∈ {−1, 1}
QUBO formulation if qi ∈ {0, 1}

Map problem onto D-Wave hardware
Embed graph defined by aij into D-Wave hardware (Chimera) graph

Challenges:

Sparse connectivity of chimera graph

Limited precision

Max size arbitrary QUBO ≈ 45 variables
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QUBO formlations for Graph Partitioning

Constrained formulation for 2 parts:

minimize xTLx

subject to
∑

xi = n/2

xi ∈ {0, 1}, i = 1, . . . , n

Unconstrained (QUBO) formulation for 2 parts:

minimize xTLx + α(
∑

i xi − n/2)2

xi ∈ {0, 1}, i = 1, ..., n

α ∼ penalty constant (balanced parts)
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QUBO formlations for k-Graph Partitioning

Constrained formulation for k parts:

minimize
∑k

j=1 xTj Lxj

subject to
∑
i

xi ,j = n/k , j = 1, . . . , k∑
j

xi ,j = 1, i = 1, . . . , n

xi ,j ∈ {0, 1}, i = 1, ..., n, j = 1, . . . , k

Unconstrained (QUBO) formulation for k parts:

minimize
∑k

j=1 xTj Lxj +
∑k

j=1 αj(
∑n

i=1 xi ,j −
n
k )2

+
∑n

i=1 γi (
∑k

j=1 xi ,j − 1)2

xi ,j ∈ {0, 1}

αj , γi ∼ penalty constants
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Multilevel Graph Partitioning with Quantum Annealing

Current work:
1 Coarsening Phase

Max edge weight matching
Algebraic Multigrid
Future work: coarsening with quantum device

2 Initial Partition

Exact solver
D-Wave

3 Uncoarsening/Refinement:

Kernighan-Lin and it’s variations
D-Wave refinement
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Multilevel Graph Partitioning with D-Wave

Multilevel Quantum Annealing for GP

D-Wave is used for

Initial Partitioning

Refinement
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Initial Partitioning with D-Wave

Question: How good is D-Wave for initial partitioning?
Approach: We study the following,

1. Quality of partitioning unweighted graphs

2. Quality of partitioning weighted graphs with uniform volume
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Initial Partitioning with D-Wave

1. Quality of partitioning unweighted graphs:

Graph data:

Walshaw benchmark archive (http://chriswalshaw.co.uk/partition/)
Molecule electronic structure graphs from QMD simulations
Random graph models

Tools:

SAPI, D-Wave API
qbsolv: hybrid method with D-Wave and tabu search

Experiment:

D-Wave Vs KaHIP, (solution quality)
D-Wave Vs METIS, (solution quality)
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Initial Partitioning: k- graph partitioning

Dense random graphs

Using sapi for embedding and
solving

Limited to ≈ 45 node graph

15-node graph into 4 parts and
20-node graph into 3 parts used
900+ qubits

Results comparable for SAPI,
METIS and qbsolv

Results using SAPI are typically
equal to qbsolv

n k SAPI METIS qbsolv

10 2 19 19 19
3 29 29 29
4 32 33 32

15 2 45 47 45
3 62 62 62
4 70 73 70

20 2 83 83 83
3 120 122 120

27 2 156 164 156
30 2 182 183 182
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Initial Partitioning: k- Graph Partitioning

Dense random graphs

Using qbsolv for large graphs

Produces kn × kn QUBO

Typically equal or better than
METIS

n k METIS qbsolv

250 2 13691 13600
4 20885 20687
8 24384 24459

16 26224 26176
500 2 55333 54999

4 83175 83055
8 98073 97695

16 105061 105057
1000 2 221826 221420

4 334631 334301
8 392018 392258

16 421327 420970
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Initial Partitioning with D-Wave

Quality of partitioning weighted graphs:

Graph data:
Random graph models

420 nodes
Vary edge probability p
Edge weight ∼ uniform(1, 100)

Tools:

qbsolv

Experiment:
D-Wave Vs KaffpaE, (solution quality)

Partition into k = 2, 3, 4, 5, 6, 7
KaffpaE run 20 times for each k
Save KaffpaE best, mean and worst cut value
Compare quality
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Initial Partitioning: Weighted Graphs

Experiment:

D-Wave Vs KaffpaE, (solution quality)

Partition into k = 2, 3, 4, 5, 6, 7
KaffpaE run 20 times for each k
Save KaffpaE best, mean and worst cut value
Compare quality

Smaller than 1 means qbsolv was better

Conclusion: Positive results for initial partitioning
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Uncoarsening Phase: Refinement

Question:

How to refine (improve) a given partition with D-Wave?

Kernighan-Lin algorithm review:

Kernighan and Lin, “An efficient heuristic procedure for partitioning graphs,“” The Bell

System Technical Journal, vol. 49, no. 2, Feb. 1970.

An iterative, 2-way, balanced partitioning heuristic

Each iteration:
Vertex pairs with the largest decrease or the smallest increase in cut size are
exchanged
These vertices are then locked
locked vertices do not participate in any further exchanges
Process continues until all the vertices are locked
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Refinement: D-Wave

KL Refinement Summary:

At each pass, two nodes are swapped and gain function updated
Developed for 2-way partitioning

D-Wave Refinement:

Use D-Wave to swap set of free nodes V ′ ⊂ V at once!
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Can handle k-way partitioning

Choice of free nodes:

Current implementation: random choice of boundary nodes
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D-Wave Refinement with no Multilevel Framework

Question: How powerful can quantum annealing be for refinement?
Experiment:

Assume h is size of quantum annealing hardware
Start at random solution
Choose h nodes at random
Optimize h nodes at each iteration (system call)
One iteration = One system call
h ≈ 45 for D-Wave 2X
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Experiments: Final Partitioning Results

Graph data

Walshaw benchmark graphs with less than 20k nodes

Experiment

One V-cycle D-Wave Vs One V-cycle KaHip
Compare with best known solution
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Results: Walshaw Graphs

Cut Ratio with Best Known Solution Number of System Calls

Graphs between 2000− 17000 nodes

Achieved best known value for 3 graphs with less than 80 system
calls

Results comparable with known solvers
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Summary

Multilevel framework ideal for near-term quantum computing
hardware

D-Wave gives high quality initial partitions

Archived best known results with for 3 graphs with less 50 systems
calls on average
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Future Work:

Coarsening for GP with quantum annealing

Improved choice of free nodes in refinement algorithm

Quantum enhanced coarsening for other combinatorial optimization
problems
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