Multilevel Quantum Annealing For Graph Partitioning

Hayato Ushijima-Mwesigwa Christian F. A Negre, Susan M. Mniszewski, Ilya Safro

Qubits 2018 D-Wave Users Conference

September 25, 2018

Motivation

Challenge:

- D-Wave 2X
 - $\approx 45x45$ arbitrary QUBO
- D-Wave 2000Q
 - $\approx 65x65$ arbitrary QUBO

Question:

How can we efficiently use near-term D-Wave computers for solving large-scale problems?

Approach:

Hybrid classical-quantum algorithms within the multilevel framework

Multilevel Methods:

- Technique useful for problems with multiple scales of behavior
- Major phases:
 - Coarsening Phase
 - Initial Solution
 - Uncoarsening Phase
 - Interpolation
 - Refinement

Applications of Multilevel Methods

Multilevel Methods For Optimization

- Line search multigrid for convex optimization (Goldfarb, Wen)
- PDE-constrained optimization (Borzi, Nash, Toint, ...)
- Multilevel trust-region methods (Gratton, Mouffe, Sartenaer, Toint, ...)
- Non-convex non-linear optimization for VLSI placement (Chan, Cong, Sze, ...)
- Linear programming multilevel iterative methods (Gelman, Mandel, ...)
- Derivative-free multilevel optimization (Mendonca, Peckman, Toint, ...)

- Examples: VLSI Placement, Partitioning, Minimum Linear Arrangement, Minimum Bandwidth, Clustering, TSP, Community Detection, Segmentation, Visualization, ...
- Quality: Usually exhibit superior results to other methods on practical test suites. Why? Because it is easy to combine the multiscale frameworks with other methods.
- Time: Usually exhibit **linear** time complexity with no hidden coefficients.
- Technical advantage: Admits parallelization. Suitable for various HPC configurations.

Question: Is the multilevel approach suitable for my problem, *P*? **Refinement Requirements**:

- Refinement algorithm Does a refinement algorithm exist?
- Can refinement algorithm handle additional restrictions caused by coarsening phase?
 - e.g., coarser graphs are weighted in GP
- For some problems, only known heuristics are based on construction rather than refinement
 - Not clear if multilevel can be applied

Coarsening Requirements:

- Solution in any of the coarsened spaces should induce a solution on the original space
 - current solution could be extended through all levels to a solution of the original problem
 - coarse solution should have the same cost with respect to objective function
 - goal is to find set of coarse variables that in future would interpolate their solution to fine variables

Graph Partitioning

Graph Partition Problem:

- Given G = (V, E)
 - $V\sim$ nodes, $E\sim$ edges
- **Goal:** Partition V into k approximately equal parts minimizing the number of cut edges between parts

Applications:

- Graph-based QMD simulations
- VLSI design
- Load balancing minimize communication between processors
- Sparse matrix-vector multiplication Partition rows to minimize communication
- Social networks, cyber networks, ...

Partitioning large graphs is often an important subproblem for complexity reduction/parallelization

Research in Graph partitioning

- NP-hard: uses heuristics and approximation algorithms
- Very active area of research spanning over 50 years
- Most successful practical methods use multilevel paradigm
- Popular mutlilevel tools:
 - CHACO by Hendrickson and Leland, since 1993
 - METIS by Karypis and Kumar, since 1995
 - SCOTCH by Pellegrini, since 1996
 - JOSTLE by Walshaw, since 1995
 - KAHIP by Schulz, since 2013

Solving Optimization Problems on D-Wave 2X

• Formulate as unconstrained quadratic integer problem

$$\min_{q_1,\ldots,q_n} \left(\sum_{i=1}^n a_i q_i + \sum_{1 \le i < j \le n} a_{ij} q_i q_j \right)$$

- Ising formulation if $q_i \in \{-1, 1\}$
- QUBO formulation if $q_i \in \{0, 1\}$
- Map problem onto D-Wave hardware
 - Embed graph defined by a_{ij} into D-Wave hardware (Chimera) graph

Challenges:

- Sparse connectivity of chimera graph
- Limited precision
- Max size arbitrary QUBO \approx 45 variables

QUBO formlations for Graph Partitioning

Constrained formulation for 2 parts:

minimize
$$\mathbf{x}^T L \mathbf{x}$$

subject to $\sum_{x_i \in \{0, 1\}, i = 1, ..., n}$

Unconstrained (QUBO) formulation for 2 parts:

minimize
$$\mathbf{x}^T L \mathbf{x} + \alpha (\sum_i x_i - n/2)^2$$

 $x_i \in \{0, 1\}, i = 1, ..., n$

 $\alpha \sim \text{penalty constant (balanced parts)}$

QUBO formlations for k-Graph Partitioning

Constrained formulation for k parts:

minimize
$$\sum_{j=1}^{k} \mathbf{x}_{j}^{T} L \mathbf{x}_{j}$$
subject to
$$\sum_{i}^{i} x_{i,j} = n/k, j = 1, \dots, k$$
$$\sum_{j}^{i} x_{i,j} = 1, \quad i = 1, \dots, n$$
$$x_{i,j} \in \{0,1\}, \quad i = 1, \dots, n, j = 1, \dots, k$$

Unconstrained (QUBO) formulation for k parts:

minimize
$$\sum_{j=1}^{k} \mathbf{x}_{j}^{T} L \mathbf{x}_{j} + \sum_{j=1}^{k} \alpha_{j} (\sum_{i=1}^{n} x_{i,j} - \frac{n}{k})^{2} + \sum_{i=1}^{n} \gamma_{i} (\sum_{j=1}^{k} x_{i,j} - 1)^{2} \\ x_{i,j} \in \{0, 1\}$$

• $\alpha_j, \gamma_i \sim$ penalty constants

Multilevel Graph Partitioning with Quantum Annealing

Current work:

- Coarsening Phase
 - Max edge weight matching
 - Algebraic Multigrid
 - Future work: coarsening with quantum device
- Initial Partition
 - Exact solver
 - D-Wave
- Our Uncoarsening/Refinement:
 - Kernighan-Lin and it's variations
 - D-Wave refinement

Multilevel Graph Partitioning with D-Wave

Multilevel Quantum Annealing for GP

D-Wave is used for

- Initial Partitioning
- Refinement

Ushijima-Mwesigwa (Clemson & LANL)

Question: How good is D-Wave for initial partitioning? Approach: We study the following,

- 1. Quality of partitioning unweighted graphs
- 2. Quality of partitioning weighted graphs with uniform volume

Initial Partitioning with D-Wave

1. Quality of partitioning unweighted graphs:

- Graph data:
 - Walshaw benchmark archive (http://chriswalshaw.co.uk/partition/)
 - Molecule electronic structure graphs from QMD simulations
 - Random graph models
- Tools:
 - SAPI, D-Wave API
 - qbsolv: hybrid method with D-Wave and tabu search
- Experiment:
 - D-Wave Vs KaHIP, (solution quality)
 - D-Wave Vs METIS, (solution quality)

Initial Partitioning: k- graph partitioning

- Dense random graphs
- Using sapi for embedding and solving
- Limited to \approx 45 node graph
- 15-node graph into 4 parts and 20-node graph into 3 parts used 900+ qubits
- Results comparable for SAPI, METIS and qbsolv
- Results using SAPI are typically equal to qbsolv

n	k	SAPI	METIS	qbsolv
10	2	19	19	19
	3	29	29	29
	4	32	33	32
15	2	45	47	45
	3	62	62	62
	4	70	73	70
20	2	83	83	83
	3	120	122	120
27	2	156	164	156
30	2	182	183	182

Initial Partitioning: k- Graph Partitioning

٩	Dense	random	graphs
---	-------	--------	-------------------------

- Using qbsolv for large graphs
- Produces $kn \times kn$ QUBO
- Typically equal or better than METIS

n	k	METIS	qbsolv
250	2	13691	13600
	4	20885	20687
	8	24384	24459
	16	26224	26176
500	2	55333	54999
	4	83175	83055
	8	98073	97695
	16	105061	105057
1000	2	221826	221420
	4	334631	334301
	8	392018	392258
	16	421327	420970

Initial Partitioning with D-Wave

Quality of partitioning weighted graphs:

- Graph data:
 - Random graph models
 - 420 nodes
 - Vary edge probability p
 - Edge weight \sim uniform(1,100)
- Tools:
 - o qbsolv
- Experiment:
 - D-Wave Vs KaffpaE, (solution quality)
 - Partition into *k* = 2, 3, 4, 5, 6, 7
 - KaffpaE run 20 times for each k
 - Save KaffpaE best, mean and worst cut value
 - Compare quality

Initial Partitioning: Weighted Graphs

Experiment:

- D-Wave Vs KaffpaE, (solution quality)
 - Partition into k = 2, 3, 4, 5, 6, 7
 - KaffpaE run 20 times for each k
 - Save KaffpaE best, mean and worst cut value
 - Compare quality

• Smaller than 1 means qbsolv was better

Conclusion: Positive results for initial partitioning

Uncoarsening Phase: Refinement

Question:

How to refine (improve) a given partition with D-Wave?

Kernighan-Lin algorithm review:

- Kernighan and Lin, "An efficient heuristic procedure for partitioning graphs," The Bell System Technical Journal, vol. 49, no. 2, Feb. 1970.
- An iterative, 2-way, balanced partitioning heuristic
- Each iteration:
 - Vertex pairs with the largest decrease or the smallest increase in cut size are exchanged
 - These vertices are then locked
 - locked vertices do not participate in any further exchanges
 - Process continues until all the vertices are locked

Refinement: D-Wave

KL Refinement Summary:

- At each pass, two nodes are swapped and gain function updated
- Developed for 2-way partitioning

D-Wave Refinement:

• Use D-Wave to swap set of **free nodes** $V' \subset V$ at once!

add20

D-Wave Refinement with no Multilevel Framework

Question: How powerful can quantum annealing be for refinement? **Experiment:**

- Assume h is size of quantum annealing hardware
- Start at random solution
- Choose h nodes at random
- Optimize *h* nodes at each iteration (system call)
- One iteration = One system call
- $h \approx 45$ for D-Wave 2X

Graph Partitioning

Experiments: Final Partitioning Results

- Graph data
 - Walshaw benchmark graphs with less than 20k nodes
- Experiment
 - One V-cycle D-Wave Vs One V-cycle KaHip
 - Compare with best known solution

Results: Walshaw Graphs

Number of System Calls

- Graphs between 2000 17000 nodes
- Achieved best known value for 3 graphs with less than 80 system calls
- Results comparable with known solvers

- Multilevel framework ideal for near-term quantum computing hardware
- D-Wave gives high quality initial partitions
- Archived best known results with for 3 graphs with less 50 systems calls on average

Future Work:

- Coarsening for GP with quantum annealing
- Improved choice of free nodes in refinement algorithm
- Quantum enhanced coarsening for other combinatorial optimization problems